
Werkzeug Documentation
Release 0.13-dev

Apr 21, 2017

Contents

I Getting Started 1

1 Installation 3

2 Transition to Werkzeug 1.0 7

3 Werkzeug Tutorial 9

4 API Levels 19

5 Quickstart 21

6 Python 3 Notes 29

II Serving and Testing 31

7 Serving WSGI Applications 33

8 Test Utilities 41

9 Debugging Applications 49

III Reference 53

10 Request / Response Objects 55

11 URL Routing 77

12 WSGI Helpers 93

13 Filesystem Utilities 103

i

14 HTTP Utilities 105

15 Data Structures 117

16 Utilities 139

17 URL Helpers 149

18 Context Locals 159

19 Middlewares 165

20 HTTP Exceptions 167

IV Deployment 175

21 Application Deployment 177

V Contributed Modules 185

22 Contributed Modules 187

VI Additional Information 213

23 Important Terms 215

24 Unicode 217

25 Dealing with Request Data 221

26 Werkzeug Changelog 225

ii

Part I

GETTING STARTED

If you are new to Werkzeug or WSGI development in general you should start here.

1

2

CHAPTER 1

Installation

Werkzeug requires at least Python 2.6 to work correctly. If you do need to support an
older version you can download an older version of Werkzeug though we strongly
recommend against that. Werkzeug currently has experimental support for Python 3.
For more information about the Python 3 support see Python 3 Notes.

Installing a released version

As a Python egg (via easy_install or pip)

You can install the most recent Werkzeug version using easy_install:

easy_install Werkzeug

Alternatively you can also use pip:

pip install Werkzeug

Either way we strongly recommend using these tools in combination with virtualenv.

This will install a Werkzeug egg in your Python installation’s site-packages directory.

From the tarball release

1. Download the most recent tarball from the download page.

2. Unpack the tarball.

3

http://peak.telecommunity.com/DevCenter/EasyInstall
https://pypi.python.org/pypi/Werkzeug

3. python setup.py install

Note that the last command will automatically download and install setuptools if you
don’t already have it installed. This requires a working Internet connection.

This will install Werkzeug into your Python installation’s site-packages directory.

Installing the development version

1. Install Git

2. git clone git://github.com/pallets/werkzeug.git

3. cd werkzeug

4. pip install --editable .

virtualenv

Virtualenv is probably what you want to use during development, and in production
too if you have shell access there.

What problem does virtualenv solve? If you like Python as I do, chances are you
want to use it for other projects besides Werkzeug-based web applications. But the
more projects you have, the more likely it is that you will be working with different
versions of Python itself, or at least different versions of Python libraries. Let’s face it;
quite often libraries break backwards compatibility, and it’s unlikely that any serious
application will have zero dependencies. So what do you do if two or more of your
projects have conflicting dependencies?

Virtualenv to the rescue! It basically enables multiple side-by-side installations of
Python, one for each project. It doesn’t actually install separate copies of Python, but
it does provide a clever way to keep different project environments isolated.

So let’s see how virtualenv works!

If you are on Mac OS X or Linux, chances are that one of the following two commands
will work for you:

$ sudo easy_install virtualenv

or even better:

$ sudo pip install virtualenv

One of these will probably install virtualenv on your system. Maybe it’s even in your
package manager. If you use Ubuntu, try:

$ sudo apt-get install python-virtualenv

4

http://peak.telecommunity.com/DevCenter/setuptools
http://git-scm.org/

If you are on Windows and don’t have the easy_install command, you must install it
first. Once you have it installed, run the same commands as above, but without the
sudo prefix.

Once you have virtualenv installed, just fire up a shell and create your own environ-
ment. I usually create a project folder and an env folder within:

$ mkdir myproject
$ cd myproject
$ virtualenv env
New python executable in env/bin/python
Installing setuptools............done.

Now, whenever you want to work on a project, you only have to activate the corre-
sponding environment. On OS X and Linux, do the following:

$. env/bin/activate

(Note the space between the dot and the script name. The dot means that this script
should run in the context of the current shell. If this command does not work in your
shell, try replacing the dot with source)

If you are a Windows user, the following command is for you:

$ env\scripts\activate

Either way, you should now be using your virtualenv (see how the prompt of your
shell has changed to show the virtualenv).

Now you can just enter the following command to get Werkzeug activated in your
virtualenv:

$ pip install Werkzeug

A few seconds later you are good to go.

5

6

CHAPTER 2

Transition to Werkzeug 1.0

Werkzeug originally had a magical import system hook that enabled everything to
be imported from one module and still loading the actual implementations lazily as
necessary. Unfortunately this turned out to be slow and also unreliable on alternative
Python implementations and Google’s App Engine.

Starting with 0.7 we recommend against the short imports and strongly encourage
starting importing from the actual implementation module. Werkzeug 1.0 will disable
the magical import hook completely.

Because finding out where the actual functions are imported and rewriting them by
hand is a painful and boring process we wrote a tool that aids in making this transition.

Automatically Rewriting Imports

For instance, with Werkzeug < 0.7 the recommended way to use the escape function
was this:

from werkzeug import escape

With Werkzeug 0.7, the recommended way to import this function is directly from the
utils module (and with 1.0 this will become mandatory). To automatically rewrite all
imports one can use the werkzeug-import-rewrite script.

You can use it by executing it with Python and with a list of folders with Werkzeug
based code. It will then spit out a hg/git compatible patch file. Example patch file
creation:

7

http://bit.ly/import-rewrite

$ python werkzeug-import-rewrite.py . > new-imports.udiff

To apply the patch one of the following methods work:

hg:

hg import new-imports.udiff

git:

git apply new-imports.udiff

patch:

patch -p1 < new-imports.udiff

Stop Using Deprecated Things

A few things in Werkzeug will stop being supported and for others, we’re suggesting
alternatives even if they will stick around for a longer time.

Do not use:

• werkzeug.script, replace it with custom scripts written with argparse, click or some-
thing similar.

• werkzeug.template, replace with a proper template engine.

• werkzeug.contrib.jsrouting, stop using URL generation for JavaScript, it does not
scale well with many public routing.

• werkzeug.contrib.kickstart, replace with hand written code, the Werkzeug API be-
came better in general that this is no longer necessary.

• werkzeug.contrib.testtools, not useful really.

8

CHAPTER 3

Werkzeug Tutorial

Welcome to the Werkzeug tutorial in which we will create a TinyURL clone that stores
URLs in a redis instance. The libraries we will use for this applications are Jinja 2
for the templates, redis for the database layer and, of course, Werkzeug for the WSGI
layer.

You can use pip to install the required libraries:

pip install Jinja2 redis Werkzeug

Also make sure to have a redis server running on your local machine. If you are on OS
X, you can use brew to install it:

brew install redis

If you are on Ubuntu or Debian, you can use apt-get:

sudo apt-get install redis-server

Redis was developed for UNIX systems and was never really designed to work on
Windows. For development purposes, the unofficial ports however work well enough.
You can get them from github.

Introducing Shortly

In this tutorial, we will together create a simple URL shortener service with Werkzeug.
Please keep in mind that Werkzeug is not a framework, it’s a library with utilities to

9

http://tinyurl.com/
http://jinja.pocoo.org/
http://redis.io/
https://github.com/dmajkic/redis/downloads

create your own framework or application and as such is very flexible. The approach
we use here is just one of many you can use.

As data store, we will use redis here instead of a relational database to keep this simple
and because that’s the kind of job that redis excels at.

The final result will look something like this:

Step 0: A Basic WSGI Introduction

Werkzeug is a utility library for WSGI. WSGI itself is a protocol or convention that
ensures that your web application can speak with the webserver and more importantly
that web applications work nicely together.

A basic “Hello World” application in WSGI without the help of Werkzeug looks like
this:

def application(environ, start_response):
start_response('200 OK', [('Content-Type', 'text/plain')])
return ['Hello World!']

A WSGI application is something you can call and pass an environ dict and
a start_response callable. The environ contains all incoming information, the
start_response function can be used to indicate the start of the response. With

10

http://redis.io/
http://redis.io/

Werkzeug you don’t have to deal directly with either as request and response objects
are provided to work with them.

The request data takes the environ object and allows you to access the data from that
environ in a nice manner. The response object is a WSGI application in itself and
provides a much nicer way to create responses.

Here is how you would write that application with response objects:

from werkzeug.wrappers import Response

def application(environ, start_response):
response = Response('Hello World!', mimetype='text/plain')
return response(environ, start_response)

And here an expanded version that looks at the query string in the URL (more impor-
tantly at the name parameter in the URL to substitute “World” against another word):

from werkzeug.wrappers import Request, Response

def application(environ, start_response):
request = Request(environ)
text = 'Hello %s!' % request.args.get('name', 'World')
response = Response(text, mimetype='text/plain')
return response(environ, start_response)

And that’s all you need to know about WSGI.

Step 1: Creating the Folders

Before we get started, let’s create the folders needed for this application:

/shortly
/static
/templates

The shortly folder is not a python package, but just something where we drop our files.
Directly into this folder we will then put our main module in the following steps. The
files inside the static folder are available to users of the application via HTTP. This is
the place where CSS and JavaScript files go. Inside the templates folder we will make
Jinja2 look for templates. The templates you create later in the tutorial will go in this
directory.

Step 2: The Base Structure

Now let’s get right into it and create a module for our application. Let’s create a file
called shortly.py in the shortly folder. At first we will need a bunch of imports. I will

11

pull in all the imports here, even if they are not used right away, to keep it from being
confusing:

import os
import redis
import urlparse
from werkzeug.wrappers import Request, Response
from werkzeug.routing import Map, Rule
from werkzeug.exceptions import HTTPException, NotFound
from werkzeug.wsgi import SharedDataMiddleware
from werkzeug.utils import redirect
from jinja2 import Environment, FileSystemLoader

Then we can create the basic structure for our application and a function to create a
new instance of it, optionally with a piece of WSGI middleware that exports all the
files on the static folder on the web:

class Shortly(object):

def __init__(self, config):
self.redis = redis.Redis(config['redis_host'], config['redis_port'])

def dispatch_request(self, request):
return Response('Hello World!')

def wsgi_app(self, environ, start_response):
request = Request(environ)
response = self.dispatch_request(request)
return response(environ, start_response)

def __call__(self, environ, start_response):
return self.wsgi_app(environ, start_response)

def create_app(redis_host='localhost', redis_port=6379, with_static=True):
app = Shortly({

'redis_host': redis_host,
'redis_port': redis_port

})
if with_static:

app.wsgi_app = SharedDataMiddleware(app.wsgi_app, {
'/static': os.path.join(os.path.dirname(__file__), 'static')

})
return app

Lastly we can add a piece of code that will start a local development server with auto-
matic code reloading and a debugger:

if __name__ == '__main__':
from werkzeug.serving import run_simple
app = create_app()

12

run_simple('127.0.0.1', 5000, app, use_debugger=True, use_reloader=True)

The basic idea here is that our Shortly class is an actual WSGI application. The
__call__ method directly dispatches to wsgi_app. This is done so that we can wrap
wsgi_app to apply middlewares like we do in the create_app function. The actual
wsgi_app method then creates a Request object and calls the dispatch_request method
which then has to return a Response object which is then evaluated as WSGI applica-
tion again. As you can see: turtles all the way down. Both the Shortly class we create,
as well as any request object in Werkzeug implements the WSGI interface. As a result
of that you could even return another WSGI application from the dispatch_request
method.

The create_app factory function can be used to create a new instance of our applica-
tion. Not only will it pass some parameters as configuration to the application but
also optionally add a WSGI middleware that exports static files. This way we have
access to the files from the static folder even when we are not configuring our server
to provide them which is very helpful for development.

Intermezzo: Running the Application

Now you should be able to execute the file with python and see a server on your local
machine:

$ python shortly.py
* Running on http://127.0.0.1:5000/
* Restarting with reloader: stat() polling

It also tells you that the reloader is active. It will use various techniques to figure out
if any file changed on the disk and then automatically restart.

Just go to the URL and you should see “Hello World!”.

Step 3: The Environment

Now that we have the basic application class, we can make the constructor do some-
thing useful and provide a few helpers on there that can come in handy. We will need
to be able to render templates and connect to redis, so let’s extend the class a bit:

def __init__(self, config):
self.redis = redis.Redis(config['redis_host'], config['redis_port'])
template_path = os.path.join(os.path.dirname(__file__), 'templates')
self.jinja_env = Environment(loader=FileSystemLoader(template_path),

autoescape=True)

def render_template(self, template_name, **context):

13

t = self.jinja_env.get_template(template_name)
return Response(t.render(context), mimetype='text/html')

Step 4: The Routing

Next up is routing. Routing is the process of matching and parsing the URL to some-
thing we can use. Werkzeug provides a flexible integrated routing system which we
can use for that. The way it works is that you create a Map instance and add a bunch
of Rule objects. Each rule has a pattern it will try to match the URL against and an
“endpoint”. The endpoint is typically a string and can be used to uniquely identify
the URL. We could also use this to automatically reverse the URL, but that’s not what
we will do in this tutorial.

Just put this into the constructor:

self.url_map = Map([
Rule('/', endpoint='new_url'),
Rule('/<short_id>', endpoint='follow_short_link'),
Rule('/<short_id>+', endpoint='short_link_details')

])

Here we create a URL map with three rules. / for the root of the URL space where
we will just dispatch to a function that implements the logic to create a new URL. And
then one that follows the short link to the target URL and another one with the same
rule but a plus (+) at the end to show the link details.

So how do we find our way from the endpoint to a function? That’s up to you. The
way we will do it in this tutorial is by calling the method on_ + endpoint on the class
itself. Here is how this works:

def dispatch_request(self, request):
adapter = self.url_map.bind_to_environ(request.environ)
try:

endpoint, values = adapter.match()
return getattr(self, 'on_' + endpoint)(request, **values)

except HTTPException, e:
return e

We bind the URL map to the current environment and get back a URLAdapter. The
adapter can be used to match the request but also to reverse URLs. The match method
will return the endpoint and a dictionary of values in the URL. For instance the rule
for follow_short_link has a variable part called short_id. When we go to http://
localhost:5000/foo we will get the following values back:

endpoint = 'follow_short_link'
values = {'short_id': u'foo'}

If it does not match anything, it will raise a NotFound exception, which is an

14

HTTPException. All HTTP exceptions are also WSGI applications by themselves which
render a default error page. So we just catch all of them down and return the error
itself.

If all works well, we call the function on_ + endpoint and pass it the request as argu-
ment as well as all the URL arguments as keyword arguments and return the response
object that method returns.

Step 5: The First View

Let’s start with the first view: the one for new URLs:

def on_new_url(self, request):
error = None
url = ''
if request.method == 'POST':

url = request.form['url']
if not is_valid_url(url):

error = 'Please enter a valid URL'
else:

short_id = self.insert_url(url)
return redirect('/%s+' % short_id)

return self.render_template('new_url.html', error=error, url=url)

This logic should be easy to understand. Basically we are checking that the request
method is POST, in which case we validate the URL and add a new entry to the
database, then redirect to the detail page. This means we need to write a function
and a helper method. For URL validation this is good enough:

def is_valid_url(url):
parts = urlparse.urlparse(url)
return parts.scheme in ('http', 'https')

For inserting the URL, all we need is this little method on our class:

def insert_url(self, url):
short_id = self.redis.get('reverse-url:' + url)
if short_id is not None:

return short_id
url_num = self.redis.incr('last-url-id')
short_id = base36_encode(url_num)
self.redis.set('url-target:' + short_id, url)
self.redis.set('reverse-url:' + url, short_id)
return short_id

reverse-url: + the URL will store the short id. If the URL was already submitted this
won’t be None and we can just return that value which will be the short ID. Otherwise
we increment the last-url-id key and convert it to base36. Then we store the link
and the reverse entry in redis. And here the function to convert to base 36:

15

def base36_encode(number):
assert number >= 0, 'positive integer required'
if number == 0:

return '0'
base36 = []
while number != 0:

number, i = divmod(number, 36)
base36.append('0123456789abcdefghijklmnopqrstuvwxyz'[i])

return ''.join(reversed(base36))

So what is missing for this view to work is the template. We will create this later, let’s
first also write the other views and then do the templates in one go.

Step 6: Redirect View

The redirect view is easy. All it has to do is to look for the link in redis and redirect
to it. Additionally we will also increment a counter so that we know how often a link
was clicked:

def on_follow_short_link(self, request, short_id):
link_target = self.redis.get('url-target:' + short_id)
if link_target is None:

raise NotFound()
self.redis.incr('click-count:' + short_id)
return redirect(link_target)

In this case we will raise a NotFound exception by hand if the URL does not exist, which
will bubble up to the dispatch_request function and be converted into a default 404
response.

Step 7: Detail View

The link detail view is very similar, we just render a template again. In addition to
looking up the target, we also ask redis for the number of times the link was clicked
and let it default to zero if such a key does not yet exist:

def on_short_link_details(self, request, short_id):
link_target = self.redis.get('url-target:' + short_id)
if link_target is None:

raise NotFound()
click_count = int(self.redis.get('click-count:' + short_id) or 0)
return self.render_template('short_link_details.html',

link_target=link_target,
short_id=short_id,
click_count=click_count

)

16

Please be aware that redis always works with strings, so you have to convert the click
count to int by hand.

Step 8: Templates

And here are all the templates. Just drop them into the templates folder. Jinja2 supports
template inheritance, so the first thing we will do is create a layout template with
blocks that act as placeholders. We also set up Jinja2 so that it automatically escapes
strings with HTML rules, so we don’t have to spend time on that ourselves. This
prevents XSS attacks and rendering errors.

layout.html:

<!doctype html>
<title>{% block title %}{% endblock %} | shortly</title>
<link rel=stylesheet href=/static/style.css type=text/css>
<div class=box>
<h1>shortly</h1>
<p class=tagline>Shortly is a URL shortener written with Werkzeug
{% block body %}{% endblock %}

</div>

new_url.html:

{% extends "layout.html" %}
{% block title %}Create New Short URL{% endblock %}
{% block body %}
<h2>Submit URL</h2>
<form action="" method=post>

{% if error %}
<p class=error>Error: {{ error }}

{% endif %}
<p>URL:
<input type=text name=url value="{{ url }}" class=urlinput>
<input type=submit value="Shorten">

</form>
{% endblock %}

short_link_details.html:

{% extends "layout.html" %}
{% block title %}Details about /{{ short_id }}{% endblock %}
{% block body %}
<h2>/{{ short_id }}</h2>
<dl>
<dt>Full link
<dd class=link><div>{{ link_target }}</div>
<dt>Click count:
<dd>{{ click_count }}

17

https://docs.python.org/dev/library/functions.html#int

</dl>
{% endblock %}

Step 9: The Style

For this to look better than ugly black and white, here a simple stylesheet that goes
along:

body { background: #E8EFF0; margin: 0; padding: 0; }
body, input { font-family: 'Helvetica Neue', Arial,

sans-serif; font-weight: 300; font-size: 18px; }
.box { width: 500px; margin: 60px auto; padding: 20px;

background: white; box-shadow: 0 1px 4px #BED1D4;
border-radius: 2px; }

a { color: #11557C; }
h1, h2 { margin: 0; color: #11557C; }
h1 a { text-decoration: none; }
h2 { font-weight: normal; font-size: 24px; }
.tagline { color: #888; font-style: italic; margin: 0 0 20px 0; }
.link div { overflow: auto; font-size: 0.8em; white-space: pre;

padding: 4px 10px; margin: 5px 0; background: #E5EAF1; }
dt { font-weight: normal; }
.error { background: #E8EFF0; padding: 3px 8px; color: #11557C;

font-size: 0.9em; border-radius: 2px; }
.urlinput { width: 300px; }

Bonus: Refinements

Look at the implementation in the example dictionary in the Werkzeug repository to
see a version of this tutorial with some small refinements such as a custom 404 page.

• shortly in the example folder

18

https://github.com/pallets/werkzeug/blob/master/examples/shortly

CHAPTER 4

API Levels

Werkzeug is intended to be a utility rather than a framework. Because of that the
user-friendly API is separated from the lower-level API so that Werkzeug can easily
be used to extend another system.

All the functionality the Request and Response objects (aka the “wrappers”) provide is
also available in small utility functions.

Example

This example implements a small Hello World application that greets the user with the
name entered:

from werkzeug.utils import escape
from werkzeug.wrappers import Request, Response

@Request.application
def hello_world(request):

result = ['<title>Greeter</title>']
if request.method == 'POST':

result.append('<h1>Hello %s!</h1>' % escape(request.form['name']))
result.append('''

<form action="" method="post">
<p>Name: <input type="text" name="name" size="20">
<input type="submit" value="Greet me">

</form>
''')
return Response(''.join(result), mimetype='text/html')

19

Alternatively the same application could be used without request and response objects
but by taking advantage of the parsing functions werkzeug provides:

from werkzeug.formparser import parse_form_data
from werkzeug.utils import escape

def hello_world(environ, start_response):
result = ['<title>Greeter</title>']
if environ['REQUEST_METHOD'] == 'POST':

form = parse_form_data(environ)[1]
result.append('<h1>Hello %s!</h1>' % escape(form['name']))

result.append('''
<form action="" method="post">

<p>Name: <input type="text" name="name" size="20">
<input type="submit" value="Greet me">

</form>
''')
start_response('200 OK', [('Content-Type', 'text/html; charset=utf-8')])
return [''.join(result)]

High or Low?

Usually you want to use the high-level layer (the request and response objects). But
there are situations where this might not be what you want.

For example you might be maintaining code for an application written in Django or
another framework and you have to parse HTTP headers. You can utilize Werkzeug
for that by accessing the lower-level HTTP header parsing functions.

Another situation where the low level parsing functions can be useful are custom
WSGI frameworks, unit-testing or modernizing an old CGI/mod_python application
to WSGI as well as WSGI middlewares where you want to keep the overhead low.

20

CHAPTER 5

Quickstart

This part of the documentation shows how to use the most important parts of
Werkzeug. It’s intended as a starting point for developers with basic understanding
of PEP 333 (WSGI) and RFC 2616 (HTTP).

Warning: Make sure to import all objects from the places the documentation sug-
gests. It is theoretically possible in some situations to import objects from different
locations but this is not supported.

For example MultiDict is a member of the werkzeug module but internally imple-
mented in a different one.

WSGI Environment

The WSGI environment contains all the information the user request transmits to the
application. It is passed to the WSGI application but you can also create a WSGI envi-
ron dict using the create_environ() helper:

>>> from werkzeug.test import create_environ
>>> environ = create_environ('/foo', 'http://localhost:8080/')

Now we have an environment to play around:

>>> environ['PATH_INFO']
'/foo'
>>> environ['SCRIPT_NAME']
''

21

https://www.python.org/dev/peps/pep-0333
https://tools.ietf.org/html/rfc2616.html

>>> environ['SERVER_NAME']
'localhost'

Usually nobody wants to work with the environ directly because it is limited to
bytestrings and does not provide any way to access the form data besides parsing
that data by hand.

Enter Request

For access to the request data the Request object is much more fun. It wraps the environ
and provides a read-only access to the data from there:

>>> from werkzeug.wrappers import Request
>>> request = Request(environ)

Now you can access the important variables and Werkzeug will parse them for you
and decode them where it makes sense. The default charset for requests is set to utf-8
but you can change that by subclassing Request.

>>> request.path
u'/foo'
>>> request.script_root
u''
>>> request.host
'localhost:8080'
>>> request.url
'http://localhost:8080/foo'

We can also find out which HTTP method was used for the request:

>>> request.method
'GET'

This way we can also access URL arguments (the query string) and data that was
transmitted in a POST/PUT request.

For testing purposes we can create a request object from supplied data using the
from_values() method:

>>> from cStringIO import StringIO
>>> data = "name=this+is+encoded+form+data&another_key=another+one"
>>> request = Request.from_values(query_string='foo=bar&blah=blafasel',
... content_length=len(data), input_stream=StringIO(data),
... content_type='application/x-www-form-urlencoded',
... method='POST')
...
>>> request.method
'POST'

22

Now we can access the URL parameters easily:

>>> request.args.keys()
['blah', 'foo']
>>> request.args['blah']
u'blafasel'

Same for the supplied form data:

>>> request.form['name']
u'this is encoded form data'

Handling for uploaded files is not much harder as you can see from this example:

def store_file(request):
file = request.files.get('my_file')
if file:

file.save('/where/to/store/the/file.txt')
else:

handle_the_error()

The files are represented as FileStorage objects which provide some common opera-
tions to work with them.

Request headers can be accessed by using the headers attribute:

>>> request.headers['Content-Length']
'54'
>>> request.headers['Content-Type']
'application/x-www-form-urlencoded'

The keys for the headers are of course case insensitive.

Header Parsing

There is more. Werkzeug provides convenient access to often used HTTP headers and
other request data.

Let’s create a request object with all the data a typical web browser transmits so that
we can play with it:

>>> environ = create_environ()
>>> environ.update(
... HTTP_USER_AGENT='Mozilla/5.0 (Macintosh; U; Mac OS X 10.5; en-US;)␣
↪→Firefox/3.1',
... HTTP_ACCEPT='text/html,application/xhtml+xml,application/xml;q=0.9,*/*;
↪→q=0.8',
... HTTP_ACCEPT_LANGUAGE='de-at,en-us;q=0.8,en;q=0.5',
... HTTP_ACCEPT_ENCODING='gzip,deflate',
... HTTP_ACCEPT_CHARSET='ISO-8859-1,utf-8;q=0.7,*;q=0.7',

23

... HTTP_IF_MODIFIED_SINCE='Fri, 20 Feb 2009 10:10:25 GMT',

... HTTP_IF_NONE_MATCH='"e51c9-1e5d-46356dc86c640"',

... HTTP_CACHE_CONTROL='max-age=0'

...)

...
>>> request = Request(environ)

Let’s start with the most useless header: the user agent:

>>> request.user_agent.browser
'firefox'
>>> request.user_agent.platform
'macos'
>>> request.user_agent.version
'3.1'
>>> request.user_agent.language
'en-US'

A more useful header is the accept header. With this header the browser informs the
web application what mimetypes it can handle and how well. All accept headers are
sorted by the quality, the best item being the first:

>>> request.accept_mimetypes.best
'text/html'
>>> 'application/xhtml+xml' in request.accept_mimetypes
True
>>> print request.accept_mimetypes["application/json"]
0.8

The same works for languages:

>>> request.accept_languages.best
'de-at'
>>> request.accept_languages.values()
['de-at', 'en-us', 'en']

And of course encodings and charsets:

>>> 'gzip' in request.accept_encodings
True
>>> request.accept_charsets.best
'ISO-8859-1'
>>> 'utf-8' in request.accept_charsets
True

Normalization is available, so you can safely use alternative forms to perform contain-
ment checking:

>>> 'UTF8' in request.accept_charsets
True

24

>>> 'de_AT' in request.accept_languages
True

E-tags and other conditional headers are available in parsed form as well:

>>> request.if_modified_since
datetime.datetime(2009, 2, 20, 10, 10, 25)
>>> request.if_none_match
<ETags '"e51c9-1e5d-46356dc86c640"'>
>>> request.cache_control
<RequestCacheControl 'max-age=0'>
>>> request.cache_control.max_age
0
>>> 'e51c9-1e5d-46356dc86c640' in request.if_none_match
True

Responses

Response objects are the opposite of request objects. They are used to send data back
to the client. In reality, response objects are nothing more than glorified WSGI appli-
cations.

So what you are doing is not returning the response objects from your WSGI applica-
tion but calling it as WSGI application inside your WSGI application and returning the
return value of that call.

So imagine your standard WSGI “Hello World” application:

def application(environ, start_response):
start_response('200 OK', [('Content-Type', 'text/plain')])
return ['Hello World!']

With response objects it would look like this:

from werkzeug.wrappers import Response

def application(environ, start_response):
response = Response('Hello World!')
return response(environ, start_response)

Also, unlike request objects, response objects are designed to be modified. So here is
what you can do with them:

>>> from werkzeug.wrappers import Response
>>> response = Response("Hello World!")
>>> response.headers['content-type']
'text/plain; charset=utf-8'
>>> response.data

25

'Hello World!'
>>> response.headers['content-length'] = len(response.data)

You can modify the status of the response in the same way. Either just the code or
provide a message as well:

>>> response.status
'200 OK'
>>> response.status = '404 Not Found'
>>> response.status_code
404
>>> response.status_code = 400
>>> response.status
'400 BAD REQUEST'

As you can see attributes work in both directions. So you can set both status and
status_code and the change will be reflected to the other.

Also common headers are exposed as attributes or with methods to set / retrieve them:

>>> response.content_length
12
>>> from datetime import datetime
>>> response.date = datetime(2009, 2, 20, 17, 42, 51)
>>> response.headers['Date']
'Fri, 20 Feb 2009 17:42:51 GMT'

Because etags can be weak or strong there are methods to set them:

>>> response.set_etag("12345-abcd")
>>> response.headers['etag']
'"12345-abcd"'
>>> response.get_etag()
('12345-abcd', False)
>>> response.set_etag("12345-abcd", weak=True)
>>> response.get_etag()
('12345-abcd', True)

Some headers are available as mutable structures. For example most of the Content-
headers are sets of values:

>>> response.content_language.add('en-us')
>>> response.content_language.add('en')
>>> response.headers['Content-Language']
'en-us, en'

Also here this works in both directions:

>>> response.headers['Content-Language'] = 'de-AT, de'
>>> response.content_language
HeaderSet(['de-AT', 'de'])

26

Authentication headers can be set that way as well:

>>> response.www_authenticate.set_basic("My protected resource")
>>> response.headers['www-authenticate']
'Basic realm="My protected resource"'

Cookies can be set as well:

>>> response.set_cookie('name', 'value')
>>> response.headers['Set-Cookie']
'name=value; Path=/'
>>> response.set_cookie('name2', 'value2')

If headers appear multiple times you can use the getlist() method to get all values
for a header:

>>> response.headers.getlist('Set-Cookie')
['name=value; Path=/', 'name2=value2; Path=/']

Finally if you have set all the conditional values, you can make the response condi-
tional against a request. Which means that if the request can assure that it has the
information already, no data besides the headers is sent over the network which saves
traffic. For that you should set at least an etag (which is used for comparison) and the
date header and then call make_conditional with the request object.

The response is modified accordingly (status code changed, response body removed,
entity headers removed etc.)

27

28

CHAPTER 6

Python 3 Notes

Since version 0.9, Werkzeug supports Python 3.3+ in addition to versions 2.6 and 2.7.
Older Python 3 versions such as 3.2 or 3.1 are not supported.

This part of the documentation outlines special information required to use Werkzeug
and WSGI on Python 3.

Warning: Python 3 support in Werkzeug is currently highly experimental. Please
give feedback on it and help us improve it.

WSGI Environment

The WSGI environment on Python 3 works slightly different than it does on Python 2.
For the most part Werkzeug hides the differences from you if you work on the higher
level APIs. The main difference between Python 2 and Python 3 is that on Python 2
the WSGI environment contains bytes whereas the environment on Python 3 contains
a range of differently encoded strings.

There are two different kinds of strings in the WSGI environ on Python 3:

• unicode strings restricted to latin1 values. These are used for HTTP headers and
a few other things.

• unicode strings carrying binary payload, roundtripped through latin1 values.
This is usually referred as “WSGI encoding dance” throughout Werkzeug.

Werkzeug provides you with functionality to deal with these automatically so that
you don’t need to be aware of the inner workings. The following functions and classes

29

should be used to read information out of the WSGI environment:

• get_current_url()

• get_host()

• get_script_name()

• get_path_info()

• get_query_string()

• EnvironHeaders()

Applications are strongly discouraged to create and modify a WSGI environment
themselves on Python 3 unless they take care of the proper decoding step. All high
level interfaces in Werkzeug will apply the correct encoding and decoding steps as
necessary.

URLs

URLs in Werkzeug attempt to represent themselves as unicode strings on Python 3.
All the parsing functions generally also provide functionality that allow operations on
bytes. In some cases functions that deal with URLs allow passing in None as charset to
change the return value to byte objects. Internally Werkzeug will now unify URIs and
IRIs as much as possible.

Request Cleanup

Request objects on Python 3 and PyPy require explicit closing when file uploads are
involved. This is required to properly close temporary file objects created by the mul-
tipart parser. For that purpose the close() method was introduced.

In addition to that request objects now also act as context managers that automatically
close.

30

Part II

SERVING AND TESTING

The development server and testing support and management script utilities are cov-
ered here:

31

32

CHAPTER 7

Serving WSGI Applications

There are many ways to serve a WSGI application. While you’re developing it, you
usually don’t want to have a full-blown webserver like Apache up and running, but
instead a simple standalone one. Because of that Werkzeug comes with a builtin de-
velopment server.

The easiest way is creating a small start-myproject.py file that runs the application
using the builtin server:

#!/usr/bin/env python
-*- coding: utf-8 -*-

from werkzeug.serving import run_simple
from myproject import make_app

app = make_app(...)
run_simple('localhost', 8080, app, use_reloader=True)

You can also pass it the extra_files keyword argument with a list of additional files (like
configuration files) you want to observe.

werkzeug.serving.run_simple(hostname, port, application, use_reloader=False,
use_debugger=False, use_evalex=True,
extra_files=None, reloader_interval=1,
reloader_type=’auto’, threaded=False, pro-
cesses=1, request_handler=None, static_files=None,
passthrough_errors=False, ssl_context=None)

Start a WSGI application. Optional features include a reloader, multithreading
and fork support.

This function has a command-line interface too:

33

python -m werkzeug.serving --help

New in version 0.5: static_files was added to simplify serving of static files as well
as passthrough_errors.

New in version 0.6: support for SSL was added.

New in version 0.8: Added support for automatically loading a SSL context from
certificate file and private key.

New in version 0.9: Added command-line interface.

New in version 0.10: Improved the reloader and added support for changing the
backend through the reloader_type parameter. See Reloader for more information.

Parameters

• hostname – The host for the application. eg: 'localhost'

• port – The port for the server. eg: 8080

• application – the WSGI application to execute

• use_reloader – should the server automatically restart the
python process if modules were changed?

• use_debugger – should the werkzeug debugging system be
used?

• use_evalex – should the exception evaluation feature be en-
abled?

• extra_files – a list of files the reloader should watch addition-
ally to the modules. For example configuration files.

• reloader_interval – the interval for the reloader in seconds.

• reloader_type – the type of reloader to use. The default is
auto detection. Valid values are 'stat' and 'watchdog'. See
Reloader for more information.

• threaded – should the process handle each request in a sepa-
rate thread?

• processes – if greater than 1 then handle each request in a new
process up to this maximum number of concurrent processes.

• request_handler – optional parameter that can be used to re-
place the default one. You can use this to replace it with a dif-
ferent BaseHTTPRequestHandler subclass.

• static_files – a dict of paths for static files. This works ex-
actly like SharedDataMiddleware, it’s actually just wrapping the
application in that middleware before serving.

34

• passthrough_errors – set this to True to disable the error catch-
ing. This means that the server will die on errors but it can be
useful to hook debuggers in (pdb etc.)

• ssl_context – an SSL context for the connection. Either an ssl.
SSLContext, a tuple in the form (cert_file, pkey_file), the
string 'adhoc' if the server should automatically create one, or
None to disable SSL (which is the default).

werkzeug.serving.is_running_from_reloader()
Checks if the application is running from within the Werkzeug reloader subpro-
cess.

New in version 0.10.

werkzeug.serving.make_ssl_devcert(base_path, host=None, cn=None)
Creates an SSL key for development. This should be used instead of the 'adhoc'
key which generates a new cert on each server start. It accepts a path for where
it should store the key and cert and either a host or CN. If a host is given it will
use the CN *.host/CN=host.

For more information see run_simple().

New in version 0.9.

Parameters

• base_path – the path to the certificate and key. The extension
.crt is added for the certificate, .key is added for the key.

• host – the name of the host. This can be used as an alternative
for the cn.

• cn – the CN to use.

Information

The development server is not intended to be used on production systems. It was
designed especially for development purposes and performs poorly under high load.
For deployment setups have a look at the Application Deployment pages.

Reloader

Changed in version 0.10.

The Werkzeug reloader constantly monitors modules and paths of your web applica-
tion, and restarts the server if any of the observed files change.

Since version 0.10, there are two backends the reloader supports: stat and watchdog.

• The default stat backend simply checks the mtime of all files in a regular interval.
This is sufficient for most cases, however, it is known to drain a laptop’s battery.

35

https://docs.python.org/dev/library/ssl.html#ssl.SSLContext
https://docs.python.org/dev/library/ssl.html#ssl.SSLContext

• The watchdog backend uses filesystem events, and is much faster than stat. It
requires the watchdog module to be installed. The recommended way to achieve
this is to add Werkzeug[watchdog] to your requirements file.

If watchdog is installed and available it will automatically be used instead of the builtin
stat reloader.

To switch between the backends you can use the reloader_type parameter of the
run_simple() function. 'stat' sets it to the default stat based polling and 'watchdog'
forces it to the watchdog backend.

Note: Some edge cases, like modules that failed to import correctly, are not handled
by the stat reloader for performance reasons. The watchdog reloader monitors such
files too.

Colored Logging

Werkzeug is able to color the output of request logs when ran from a terminal, just
install the termcolor package. Windows users need to install colorama in addition to
termcolor for this to work.

Virtual Hosts

Many web applications utilize multiple subdomains. This can be a bit tricky to sim-
ulate locally. Fortunately there is the hosts file that can be used to assign the local
computer multiple names.

This allows you to call your local computer yourapplication.local and
api.yourapplication.local (or anything else) in addition to localhost.

You can find the hosts file on the following location:

Windows %SystemRoot%\system32\drivers\etc\hosts
Linux / OS X /etc/hosts

You can open the file with your favorite text editor and add a new name after localhost:

127.0.0.1 localhost yourapplication.local api.yourapplication.local

Save the changes and after a while you should be able to access the development
server on these host names as well. You can use the URL Routing system to dispatch
between different hosts or parse request.host yourself.

36

https://pypi.python.org/pypi/watchdog
https://pypi.python.org/pypi/termcolor
https://pypi.python.org/pypi/colorama
http://en.wikipedia.org/wiki/Hosts_file

Shutting Down The Server

New in version 0.7.

Starting with Werkzeug 0.7 the development server provides a way to shut down the
server after a request. This currently only works with Python 2.6 and later and will
only work with the development server. To initiate the shutdown you have to call a
function named 'werkzeug.server.shutdown' in the WSGI environment:

def shutdown_server(environ):
if not 'werkzeug.server.shutdown' in environ:

raise RuntimeError('Not running the development server')
environ['werkzeug.server.shutdown']()

Troubleshooting

On operating systems that support ipv6 and have it configured such as modern Linux
systems, OS X 10.4 or higher as well as Windows Vista some browsers can be painfully
slow if accessing your local server. The reason for this is that sometimes “localhost” is
configured to be available on both ipv4 and ipv6 sockets and some browsers will try
to access ipv6 first and then ipv4.

At the current time the integrated webserver does not support ipv6 and ipv4 at the
same time and for better portability ipv4 is the default.

If you notice that the web browser takes ages to load the page there are two ways
around this issue. If you don’t need ipv6 support you can disable the ipv6 entry in the
hosts file by removing this line:

::1 localhost

Alternatively you can also disable ipv6 support in your browser. For example if Fire-
fox shows this behavior you can disable it by going to about:config and disabling the
network.dns.disableIPv6 key. This however is not recommended as of Werkzeug 0.6.1!

Starting with Werkzeug 0.6.1, the server will now switch between ipv4 and ipv6 based
on your operating system’s configuration. This means if that you disabled ipv6 sup-
port in your browser but your operating system is preferring ipv6, you will be unable
to connect to your server. In that situation, you can either remove the localhost entry
for ::1 or explicitly bind the hostname to an ipv4 address (127.0.0.1)

SSL

New in version 0.6.

37

http://en.wikipedia.org/wiki/Hosts_file

The builtin server supports SSL for testing purposes. If an SSL context is provided it
will be used. That means a server can either run in HTTP or HTTPS mode, but not
both.

Quickstart

The easiest way to do SSL based development with Werkzeug is by using it to generate
an SSL certificate and private key and storing that somewhere and to then put it there.
For the certificate you need to provide the name of your server on generation or a CN.

1. Generate an SSL key and store it somewhere:

>>> from werkzeug.serving import make_ssl_devcert
>>> make_ssl_devcert('/path/to/the/key', host='localhost')
('/path/to/the/key.crt', '/path/to/the/key.key')

2. Now this tuple can be passed as ssl_context to the run_simple() method:

run_simple('localhost', 4000, application,
ssl_context=('/path/to/the/key.crt',

'/path/to/the/key.key'))

You will have to acknowledge the certificate in your browser once then.

Loading Contexts by Hand

In Python 2.7.9 and 3+ you also have the option to use a ssl.SSLContext object in-
stead of a simple tuple. This way you have better control over the SSL behavior of
Werkzeug’s builtin server:

import ssl
ctx = ssl.SSLContext(ssl.PROTOCOL_SSLv23)
ctx.load_cert_chain('ssl.cert', 'ssl.key')
run_simple('localhost', 4000, application, ssl_context=ctx)

Generating Certificates

A key and certificate can be created in advance using the openssl tool instead of the
make_ssl_devcert(). This requires that you have the openssl command installed on
your system:

$ openssl genrsa 1024 > ssl.key
$ openssl req -new -x509 -nodes -sha1 -days 365 -key ssl.key > ssl.cert

38

Adhoc Certificates

The easiest way to enable SSL is to start the server in adhoc-mode. In that case
Werkzeug will generate an SSL certificate for you:

run_simple('localhost', 4000, application,
ssl_context='adhoc')

The downside of this of course is that you will have to acknowledge the certificate
each time the server is reloaded. Adhoc certificates are discouraged because modern
browsers do a bad job at supporting them for security reasons.

This feature requires the pyOpenSSL library to be installed.

39

40

CHAPTER 8

Test Utilities

Quite often you want to unittest your application or just check the output from an
interactive python session. In theory that is pretty simple because you can fake a
WSGI environment and call the application with a dummy start_response and iterate
over the application iterator but there are argumentably better ways to interact with
an application.

Diving In

Werkzeug provides a Client object which you can pass a WSGI application (and option-
ally a response wrapper) which you can use to send virtual requests to the application.

A response wrapper is a callable that takes three arguments: the application iterator,
the status and finally a list of headers. The default response wrapper returns a tu-
ple. Because response objects have the same signature, you can use them as response
wrapper, ideally by subclassing them and hooking in test functionality.

>>> from werkzeug.test import Client
>>> from werkzeug.testapp import test_app
>>> from werkzeug.wrappers import BaseResponse
>>> c = Client(test_app, BaseResponse)
>>> resp = c.get('/')
>>> resp.status_code
200
>>> resp.headers
Headers([('Content-Type', 'text/html; charset=utf-8'), ('Content-Length', '8339')])
>>> resp.data.splitlines()[0]
'<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"'

41

Or without a wrapper defined:

>>> c = Client(test_app)
>>> app_iter, status, headers = c.get('/')
>>> status
'200 OK'
>>> headers
[('Content-Type', 'text/html; charset=utf-8'), ('Content-Length', '8339')]
>>> ''.join(app_iter).splitlines()[0]
'<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"'

Environment Building

New in version 0.5.

The easiest way to interactively test applications is using the EnvironBuilder. It can
create both standard WSGI environments and request objects.

The following example creates a WSGI environment with one uploaded file and a form
field:

>>> from werkzeug.test import EnvironBuilder
>>> from StringIO import StringIO
>>> builder = EnvironBuilder(method='POST', data={'foo': 'this is some text',
... 'file': (StringIO('my file contents'), 'test.txt')})
>>> env = builder.get_environ()

The resulting environment is a regular WSGI environment that can be used for further
processing:

>>> from werkzeug.wrappers import Request
>>> req = Request(env)
>>> req.form['foo']
u'this is some text'
>>> req.files['file']
<FileStorage: u'test.txt' ('text/plain')>
>>> req.files['file'].read()
'my file contents'

The EnvironBuilder figures out the content type automatically if you pass a dict to
the constructor as data. If you provide a string or an input stream you have to do that
yourself.

By default it will try to use application/x-www-form-urlencoded and only use
multipart/form-data if files are uploaded:

>>> builder = EnvironBuilder(method='POST', data={'foo': 'bar'})
>>> builder.content_type
'application/x-www-form-urlencoded'
>>> builder.files['foo'] = StringIO('contents')

42

>>> builder.content_type
'multipart/form-data'

If a string is provided as data (or an input stream) you have to specify the content type
yourself:

>>> builder = EnvironBuilder(method='POST', data='{"json": "this is"}')
>>> builder.content_type
>>> builder.content_type = 'application/json'

Testing API

class werkzeug.test.EnvironBuilder(path=’/’, base_url=None,
query_string=None, method=’GET’, in-
put_stream=None, content_type=None,
content_length=None, errors_stream=None,
multithread=False, multiprocess=False,
run_once=False, headers=None,
data=None, environ_base=None, envi-
ron_overrides=None, charset=’utf-8’)

This class can be used to conveniently create a WSGI environment for testing
purposes. It can be used to quickly create WSGI environments or request objects
from arbitrary data.

The signature of this class is also used in some other places as of Werkzeug 0.5
(create_environ(), BaseResponse.from_values(), Client.open()). Because of
this most of the functionality is available through the constructor alone.

Files and regular form data can be manipulated independently of each other
with the form and files attributes, but are passed with the same argument to
the constructor: data.

data can be any of these values:

•a str or bytes object: The object is converted into an input_stream, the
content_length is set and you have to provide a content_type.

•a dict or MultiDict: The keys have to be strings. The values have to be either
any of the following objects, or a list of any of the following objects:

–a file-like object: These are converted into FileStorage objects auto-
matically.

–a tuple: The add_file() method is called with the key and the unpacked
tuple items as positional arguments.

–a str: The string is set as form data for the associated key.

•a file-like object: The object content is loaded in memory and then handled
like a regular str or a bytes.

43

New in version 0.6: path and base_url can now be unicode strings that are en-
coded using the iri_to_uri() function.

Parameters

• path – the path of the request. In the WSGI environment this
will end up as PATH_INFO. If the query_string is not defined
and there is a question mark in the path everything after it is
used as query string.

• base_url – the base URL is a URL that is used to extract the
WSGI URL scheme, host (server name + server port) and the
script root (SCRIPT_NAME).

• query_string – an optional string or dict with URL parameters.

• method – the HTTP method to use, defaults to GET.

• input_stream – an optional input stream. Do not specify this
and data. As soon as an input stream is set you can’t modify
args and files unless you set the input_stream to None again.

• content_type – The content type for the request. As of 0.5 you
don’t have to provide this when specifying files and form data
via data.

• content_length – The content length for the request. You don’t
have to specify this when providing data via data.

• errors_stream – an optional error stream that is used for
wsgi.errors. Defaults to stderr.

• multithread – controls wsgi.multithread. Defaults to False.

• multiprocess – controls wsgi.multiprocess. Defaults to False.

• run_once – controls wsgi.run_once. Defaults to False.

• headers – an optional list or Headers object of headers.

• data – a string or dict of form data or a file-object. See explana-
tion above.

• environ_base – an optional dict of environment defaults.

• environ_overrides – an optional dict of environment over-
rides.

• charset – the charset used to encode unicode data.

path
The path of the application. (aka PATH_INFO)

charset
The charset used to encode unicode data.

headers
A Headers object with the request headers.

44

errors_stream
The error stream used for the wsgi.errors stream.

multithread
The value of wsgi.multithread

multiprocess
The value of wsgi.multiprocess

environ_base
The dict used as base for the newly create environ.

environ_overrides
A dict with values that are used to override the generated environ.

input_stream
The optional input stream. This and form / files is mutually exclusive.
Also do not provide this stream if the request method is not POST / PUT or
something comparable.

args
The URL arguments as MultiDict.

base_url
The base URL is a URL that is used to extract the WSGI URL scheme, host
(server name + server port) and the script root (SCRIPT_NAME).

close()
Closes all files. If you put real file objects into the files dict you can call
this method to automatically close them all in one go.

content_length
The content length as integer. Reflected from and to the headers. Do not set
if you set files or form for auto detection.

content_type
The content type for the request. Reflected from and to the headers. Do not
set if you set files or form for auto detection.

files
A FileMultiDict of uploaded files. You can use the add_file() method to
add new files to the dict.

form
A MultiDict of form values.

get_environ()
Return the built environ.

get_request(cls=None)
Returns a request with the data. If the request class is not specified
request_class is used.

Parameters cls – The request wrapper to use.

45

input_stream
An optional input stream. If you set this it will clear form and files.

query_string
The query string. If you set this to a string args will no longer be available.

request_class
the default request class for get_request()

alias of BaseRequest

server_name
The server name (read-only, use host to set)

server_port
The server port as integer (read-only, use host to set)

server_protocol = ‘HTTP/1.1’
the server protocol to use. defaults to HTTP/1.1

wsgi_version = (1, 0)
the wsgi version to use. defaults to (1, 0)

class werkzeug.test.Client(application, response_wrapper=None,
use_cookies=True, allow_subdomain_redirects=False)

This class allows to send requests to a wrapped application.

The response wrapper can be a class or factory function that takes three argu-
ments: app_iter, status and headers. The default response wrapper just returns
a tuple.

Example:

class ClientResponse(BaseResponse):
...

client = Client(MyApplication(), response_wrapper=ClientResponse)

The use_cookies parameter indicates whether cookies should be stored and sent
for subsequent requests. This is True by default, but passing False will disable
this behaviour.

If you want to request some subdomain of your application you may set al-
low_subdomain_redirects to True as if not no external redirects are allowed.

New in version 0.5: use_cookies is new in this version. Older versions did not
provide builtin cookie support.

open(*args, **kwargs)
Takes the same arguments as the EnvironBuilder class with some additions:
You can provide a EnvironBuilder or a WSGI environment as only argu-
ment instead of the EnvironBuilder arguments and two optional keyword
arguments (as_tuple, buffered) that change the type of the return value or the
way the application is executed.

46

Changed in version 0.5: If a dict is provided as file in the dict for the data pa-
rameter the content type has to be called content_type now instead of mime-
type. This change was made for consistency with werkzeug.FileWrapper.

The follow_redirects parameter was added to open().

Additional parameters:

Parameters

• as_tuple – Returns a tuple in the form (environ, result)

• buffered – Set this to True to buffer the application run. This
will automatically close the application for you as well.

• follow_redirects – Set this to True if the Client should follow
HTTP redirects.

Shortcut methods are available for many HTTP methods:

get(*args, **kw)
Like open but method is enforced to GET.

patch(*args, **kw)
Like open but method is enforced to PATCH.

post(*args, **kw)
Like open but method is enforced to POST.

head(*args, **kw)
Like open but method is enforced to HEAD.

put(*args, **kw)
Like open but method is enforced to PUT.

delete(*args, **kw)
Like open but method is enforced to DELETE.

options(*args, **kw)
Like open but method is enforced to OPTIONS.

trace(*args, **kw)
Like open but method is enforced to TRACE.

werkzeug.test.create_environ([options])
Create a new WSGI environ dict based on the values passed. The first parameter
should be the path of the request which defaults to ‘/’. The second one can
either be an absolute path (in that case the host is localhost:80) or a full path to
the request with scheme, netloc port and the path to the script.

This accepts the same arguments as the EnvironBuilder constructor.

Changed in version 0.5: This function is now a thin wrapper over
EnvironBuilder which was added in 0.5. The headers, environ_base, envi-
ron_overrides and charset parameters were added.

47

werkzeug.test.run_wsgi_app(app, environ, buffered=False)
Return a tuple in the form (app_iter, status, headers) of the application output.
This works best if you pass it an application that returns an iterator all the time.

Sometimes applications may use the write() callable returned by the start_response
function. This tries to resolve such edge cases automatically. But if you don’t get
the expected output you should set buffered to True which enforces buffering.

If passed an invalid WSGI application the behavior of this function is undefined.
Never pass non-conforming WSGI applications to this function.

Parameters

• app – the application to execute.

• buffered – set to True to enforce buffering.

Returns tuple in the form (app_iter, status, headers)

48

CHAPTER 9

Debugging Applications

Depending on the WSGI gateway/server, exceptions are handled differently. But most
of the time, exceptions go to stderr or the error log.

Since this is not the best debugging environment, Werkzeug provides a WSGI middle-
ware that renders nice debugging tracebacks, optionally with an AJAX based debug-
ger (which allows to execute code in the context of the traceback’s frames).

The interactive debugger however does not work in forking environments which
makes it nearly impossible to use on production servers. Also the debugger allows
the execution of arbitrary code which makes it a major security risk and must never
be used on production machines because of that. We cannot stress this enough. Do
not enable this in production.

Enabling the Debugger

You can enable the debugger by wrapping the application in a DebuggedApplication
middleware. Additionally there are parameters to the run_simple() function to enable
it because this is a common task during development.

class werkzeug.debug.DebuggedApplication(app, evalex=False, re-
quest_key=’werkzeug.request’,
console_path=’/console’,
console_init_func=None,
show_hidden_frames=False,
lodgeit_url=None,
pin_security=True,
pin_logging=True)

49

Enables debugging support for a given application:

from werkzeug.debug import DebuggedApplication
from myapp import app
app = DebuggedApplication(app, evalex=True)

The evalex keyword argument allows evaluating expressions in a traceback’s
frame context.

New in version 0.9: The lodgeit_url parameter was deprecated.

Parameters

• app – the WSGI application to run debugged.

• evalex – enable exception evaluation feature (interactive de-
bugging). This requires a non-forking server.

• request_key – The key that points to the request object in ths
environment. This parameter is ignored in current versions.

• console_path – the URL for a general purpose console.

• console_init_func – the function that is executed before start-
ing the general purpose console. The return value is used as
initial namespace.

• show_hidden_frames – by default hidden traceback frames are
skipped. You can show them by setting this parameter to True.

• pin_security – can be used to disable the pin based security
system.

• pin_logging – enables the logging of the pin system.

Using the Debugger

Once enabled and an error happens during a request you will see a detailed traceback
instead of a general “internal server error”. If you have the evalex feature enabled you
can also get a traceback for every frame in the traceback by clicking on the console
icon.

Once clicked a console opens where you can execute Python code in:

50

Inside the interactive consoles you can execute any kind of Python code. Unlike regu-
lar Python consoles the output of the object reprs is colored and stripped to a reason-
able size by default. If the output is longer than what the console decides to display a
small plus sign is added to the repr and a click will expand the repr.

To display all variables that are defined in the current frame you can use the dump()
function. You can call it without arguments to get a detailed list of all variables and
their values, or with an object as argument to get a detailed list of all the attributes it
has.

Debugger PIN

Starting with Werkzeug 0.11 the debugger is additionally protected by a PIN. This is a
security helper to make it less likely for the debugger to be exploited in production as
it has happened to people to keep the debugger active. The PIN based authentication
is enabled by default.

When the debugger comes up, on first usage it will prompt for a PIN that is printed

51

to the command line. The PIN is generated in a stable way that is specific to the
project. In some situations it might be not possible to generate a stable PIN between
restarts in which case an explicit PIN can be provided through the environment vari-
able WERKZEUG_DEBUG_PIN. This can be set to a number and will become the PIN. This
variable can also be set to the value off to disable the PIN check entirely.

If the PIN is entered too many times incorrectly the server needs to be restarted.

This feature is not supposed to entirely secure the debugger. It’s intended to make
it harder for an attacker to exploit the debugger. Never enable the debugger in
production.

Pasting Errors

If you click on the Traceback title, the traceback switches over to a text based one. The
text based one can be pasted to gist.github.com with one click.

52

https://gist.github.com

Part III

REFERENCE

53

54

CHAPTER 10

Request / Response Objects

The request and response objects wrap the WSGI environment or the return value from
a WSGI application so that it is another WSGI application (wraps a whole application).

How they Work

Your WSGI application is always passed two arguments. The WSGI “environment”
and the WSGI start_response function that is used to start the response phase. The
Request class wraps the environ for easier access to request variables (form data, re-
quest headers etc.).

The Response on the other hand is a standard WSGI application that you can create.
The simple hello world in Werkzeug looks like this:

from werkzeug.wrappers import Response
application = Response('Hello World!')

To make it more useful you can replace it with a function and do some processing:

from werkzeug.wrappers import Request, Response

def application(environ, start_response):
request = Request(environ)
response = Response("Hello %s!" % request.args.get('name', 'World!'))
return response(environ, start_response)

Because this is a very common task the Request object provides a helper for that. The
above code can be rewritten like this:

55

from werkzeug.wrappers import Request, Response

@Request.application
def application(request):

return Response("Hello %s!" % request.args.get('name', 'World!'))

The application is still a valid WSGI application that accepts the environment and
start_response callable.

Mutability and Reusability of Wrappers

The implementation of the Werkzeug request and response objects are trying to guard
you from common pitfalls by disallowing certain things as much as possible. This
serves two purposes: high performance and avoiding of pitfalls.

For the request object the following rules apply:

1. The request object is immutable. Modifications are not supported by default,
you may however replace the immutable attributes with mutable attributes if
you need to modify it.

2. The request object may be shared in the same thread, but is not thread safe itself.
If you need to access it from multiple threads, use locks around calls.

3. It’s not possible to pickle the request object.

For the response object the following rules apply:

1. The response object is mutable

2. The response object can be pickled or copied after freeze() was called.

3. Since Werkzeug 0.6 it’s safe to use the same response object for multiple WSGI
responses.

4. It’s possible to create copies using copy.deepcopy.

Base Wrappers

These objects implement a common set of operations. They are missing fancy addon
functionality like user agent parsing or etag handling. These features are available by
mixing in various mixin classes or using Request and Response.

class werkzeug.wrappers.BaseRequest(environ, populate_request=True, shal-
low=False)

Very basic request object. This does not implement advanced stuff like entity
tag parsing or cache controls. The request object is created with the WSGI en-
vironment as first argument and will add itself to the WSGI environment as
'werkzeug.request' unless it’s created with populate_request set to False.

56

There are a couple of mixins available that add additional functionality to the
request object, there is also a class called Request which subclasses BaseRequest
and all the important mixins.

It’s a good idea to create a custom subclass of the BaseRequest and add missing
functionality either via mixins or direct implementation. Here an example for
such subclasses:

from werkzeug.wrappers import BaseRequest, ETagRequestMixin

class Request(BaseRequest, ETagRequestMixin):
pass

Request objects are read only. As of 0.5 modifications are not allowed in any
place. Unlike the lower level parsing functions the request object will use im-
mutable objects everywhere possible.

Per default the request object will assume all the text data is utf-8 encoded. Please
refer to the unicode chapter for more details about customizing the behavior.

Per default the request object will be added to the WSGI environment as
werkzeug.request to support the debugging system. If you don’t want that, set
populate_request to False.

If shallow is True the environment is initialized as shallow object around the en-
viron. Every operation that would modify the environ in any way (such as con-
suming form data) raises an exception unless the shallow attribute is explicitly
set to False. This is useful for middlewares where you don’t want to consume the
form data by accident. A shallow request is not populated to the WSGI environ-
ment.

Changed in version 0.5: read-only mode was enforced by using immutables
classes for all data.

environ
The WSGI environment that the request object uses for data retrival.

shallow
True if this request object is shallow (does not modify environ), False other-
wise.

_get_file_stream(total_content_length, content_type, filename=None, con-
tent_length=None)

Called to get a stream for the file upload.

This must provide a file-like class with read(), readline() and seek() methods
that is both writeable and readable.

The default implementation returns a temporary file if the total content
length is higher than 500KB. Because many browsers do not provide a con-
tent length for the files only the total content length matters.

Parameters

57

• total_content_length – the total content length of all the
data in the request combined. This value is guaranteed to
be there.

• content_type – the mimetype of the uploaded file.

• filename – the filename of the uploaded file. May be None.

• content_length – the length of this file. This value is usually
not provided because webbrowsers do not provide this value.

access_route
If a forwarded header exists this is a list of all ip addresses from the client
ip to the last proxy server.

classmethod application(f)
Decorate a function as responder that accepts the request as first argument.
This works like the responder() decorator but the function is passed the
request object as first argument and the request object will be closed auto-
matically:

@Request.application
def my_wsgi_app(request):

return Response('Hello World!')

Parameters f – the WSGI callable to decorate

Returns a new WSGI callable

args
The parsed URL parameters (the part in the URL after the question mark).

By default an ImmutableMultiDict is returned from this function. This can
be changed by setting parameter_storage_class to a different type. This
might be necessary if the order of the form data is important.

base_url
Like url but without the querystring See also: trusted_hosts.

charset = ‘utf-8’
the charset for the request, defaults to utf-8

close()
Closes associated resources of this request object. This closes all file handles
explicitly. You can also use the request object in a with statement which will
automatically close it.

New in version 0.9.

cookies
A dict with the contents of all cookies transmitted with the request.

data

58

https://docs.python.org/dev/library/stdtypes.html#dict

Contains the incoming request data as string in case it came with a mime-
type Werkzeug does not handle.

dict_storage_class
the type to be used for dict values from the incoming WSGI environ-
ment. By default an ImmutableTypeConversionDict is used (for example for
cookies).

New in version 0.6.

alias of ImmutableTypeConversionDict

disable_data_descriptor = False
Indicates whether the data descriptor should be allowed to read and buffer
up the input stream. By default it’s enabled.

New in version 0.9.

encoding_errors = ‘replace’
the error handling procedure for errors, defaults to ‘replace’

files
MultiDict object containing all uploaded files. Each key in files is the
name from the <input type="file" name="">. Each value in files is a
Werkzeug FileStorage object.

It basically behaves like a standard file object you know from Python, with
the difference that it also has a save() function that can store the file on the
filesystem.

Note that files will only contain data if the request method was
POST, PUT or PATCH and the <form> that posted to the request had
enctype="multipart/form-data". It will be empty otherwise.

See the MultiDict / FileStorage documentation for more details about the
used data structure.

form
The form parameters. By default an ImmutableMultiDict is returned from
this function. This can be changed by setting parameter_storage_class to
a different type. This might be necessary if the order of the form data is
important.

Please keep in mind that file uploads will not end up here, but instead in
the files attribute.

Changed in version 0.9: Previous to Werkzeug 0.9 this would only contain
form data for POST and PUT requests.

form_data_parser_class
The form data parser that shoud be used. Can be replaced to customize the
form date parsing.

alias of FormDataParser

59

classmethod from_values(*args, **kwargs)
Create a new request object based on the values provided. If environ is
given missing values are filled from there. This method is useful for small
scripts when you need to simulate a request from an URL. Do not use this
method for unittesting, there is a full featured client object (Client) that
allows to create multipart requests, support for cookies etc.

This accepts the same options as the EnvironBuilder.

Changed in version 0.5: This method now accepts the same arguments as
EnvironBuilder. Because of this the environ parameter is now called envi-
ron_overrides.

Returns request object

full_path
Requested path as unicode, including the query string.

get_data(cache=True, as_text=False, parse_form_data=False)
This reads the buffered incoming data from the client into one bytestring.
By default this is cached but that behavior can be changed by setting cache
to False.

Usually it’s a bad idea to call this method without checking the content
length first as a client could send dozens of megabytes or more to cause
memory problems on the server.

Note that if the form data was already parsed this method will not return
anything as form data parsing does not cache the data like this method does.
To implicitly invoke form data parsing function set parse_form_data to True.
When this is done the return value of this method will be an empty string
if the form parser handles the data. This generally is not necessary as if
the whole data is cached (which is the default) the form parser will used
the cached data to parse the form data. Please be generally aware of check-
ing the content length first in any case before calling this method to avoid
exhausting server memory.

If as_text is set to True the return value will be a decoded unicode string.

New in version 0.9.

headers
The headers from the WSGI environ as immutable EnvironHeaders.

host
Just the host including the port if available. See also: trusted_hosts.

host_url
Just the host with scheme as IRI. See also: trusted_hosts.

is_multiprocess
boolean that is True if the application is served by a WSGI server that
spawns multiple processes.

60

is_multithread
boolean that is True if the application is served by a multithreaded WSGI
server.

is_run_once
boolean that is True if the application will be executed only once in a process
lifetime. This is the case for CGI for example, but it’s not guaranteed that
the execution only happens one time.

is_secure
True if the request is secure.

is_xhr
True if the request was triggered via a JavaScript XMLHttpRequest. This
only works with libraries that support the X-Requested-With header and
set it to “XMLHttpRequest”. Libraries that do that are prototype, jQuery
and Mochikit and probably some more.

Deprecated since version 0.13: X-Requested-With is not standard and is un-
reliable.

list_storage_class
the type to be used for list values from the incoming WSGI environment.
By default an ImmutableList is used (for example for access_list).

New in version 0.6.

alias of ImmutableList

make_form_data_parser()
Creates the form data parser. Instanciates the form_data_parser_class with
some parameters.

New in version 0.8.

max_content_length = None
the maximum content length. This is forwarded to the form data parsing
function (parse_form_data()). When set and the form or files attribute
is accessed and the parsing fails because more than the specified value is
transmitted a RequestEntityTooLarge exception is raised.

Have a look at Dealing with Request Data for more details.

New in version 0.5.

max_form_memory_size = None
the maximum form field size. This is forwarded to the form data parsing
function (parse_form_data()). When set and the form or files attribute is
accessed and the data in memory for post data is longer than the specified
value a RequestEntityTooLarge exception is raised.

Have a look at Dealing with Request Data for more details.

New in version 0.5.

61

method
The request method. (For example 'GET' or 'POST').

parameter_storage_class
the class to use for args and form. The default is an ImmutableMultiDict
which supports multiple values per key. alternatively it makes sense to use
an ImmutableOrderedMultiDict which preserves order or a ImmutableDict
which is the fastest but only remembers the last key. It is also possible to
use mutable structures, but this is not recommended.

New in version 0.6.

alias of ImmutableMultiDict

path
Requested path as unicode. This works a bit like the regular path info in the
WSGI environment but will always include a leading slash, even if the URL
root is accessed.

query_string
The URL parameters as raw bytestring.

remote_addr
The remote address of the client.

remote_user
If the server supports user authentication, and the script is protected, this
attribute contains the username the user has authenticated as.

scheme
URL scheme (http or https).

New in version 0.7.

script_root
The root path of the script without the trailing slash.

stream
If the incoming form data was not encoded with a known mimetype the
data is stored unmodified in this stream for consumption. Most of the time
it is a better idea to use data which will give you that data as a string. The
stream only returns the data once.

Unlike input_stream this stream is properly guarded that you can’t acci-
dentally read past the length of the input. Werkzeug will internally always
refer to this stream to read data which makes it possible to wrap this object
with a stream that does filtering.

Changed in version 0.9: This stream is now always available but might be
consumed by the form parser later on. Previously the stream was only set
if no parsing happened.

trusted_hosts = None
Optionally a list of hosts that is trusted by this request. By default all hosts

62

are trusted which means that whatever the client sends the host is will be
accepted.

This is the recommended setup as a webserver should manually be set up
to only route correct hosts to the application, and remove the X-Forwarded-
Host header if it is not being used (see werkzeug.wsgi.get_host()).

New in version 0.9.

url
The reconstructed current URL as IRI. See also: trusted_hosts.

url_charset
The charset that is assumed for URLs. Defaults to the value of charset.

New in version 0.6.

url_root
The full URL root (with hostname), this is the application root as IRI. See
also: trusted_hosts.

values
A werkzeug.datastructures.CombinedMultiDict that combines args and
form.

want_form_data_parsed
Returns True if the request method carries content. As of Werkzeug 0.9 this
will be the case if a content type is transmitted.

New in version 0.8.

class werkzeug.wrappers.BaseResponse(response=None, status=None,
headers=None, mimetype=None,
content_type=None, di-
rect_passthrough=False)

Base response class. The most important fact about a response object is that it’s
a regular WSGI application. It’s initialized with a couple of response parameters
(headers, body, status code etc.) and will start a valid WSGI response when
called with the environ and start response callable.

Because it’s a WSGI application itself processing usually ends before the actual
response is sent to the server. This helps debugging systems because they can
catch all the exceptions before responses are started.

Here a small example WSGI application that takes advantage of the response
objects:

from werkzeug.wrappers import BaseResponse as Response

def index():
return Response('Index page')

def application(environ, start_response):
path = environ.get('PATH_INFO') or '/'
if path == '/':

63

response = index()
else:

response = Response('Not Found', status=404)
return response(environ, start_response)

Like BaseRequest which object is lacking a lot of functionality implemented in
mixins. This gives you a better control about the actual API of your response ob-
jects, so you can create subclasses and add custom functionality. A full featured
response object is available as Response which implements a couple of useful
mixins.

To enforce a new type of already existing responses you can use the force_type()
method. This is useful if you’re working with different subclasses of response
objects and you want to post process them with a known interface.

Per default the response object will assume all the text data is utf-8 encoded.
Please refer to the unicode chapter for more details about customizing the be-
havior.

Response can be any kind of iterable or string. If it’s a string it’s considered
being an iterable with one item which is the string passed. Headers can be a list
of tuples or a Headers object.

Special note for mimetype and content_type: For most mime types mimetype and
content_type work the same, the difference affects only ‘text’ mimetypes. If the
mimetype passed with mimetype is a mimetype starting with text/, the charset
parameter of the response object is appended to it. In contrast the content_type
parameter is always added as header unmodified.

Changed in version 0.5: the direct_passthrough parameter was added.

Parameters

• response – a string or response iterable.

• status – a string with a status or an integer with the status
code.

• headers – a list of headers or a Headers object.

• mimetype – the mimetype for the response. See notice above.

• content_type – the content type for the response. See notice
above.

• direct_passthrough – if set to True iter_encoded() is not
called before iteration which makes it possible to pass spe-
cial iterators through unchanged (see wrap_file() for more de-
tails.)

response
The application iterator. If constructed from a string this will be a list, other-
wise the object provided as application iterator. (The first argument passed
to BaseResponse)

64

headers
A Headers object representing the response headers.

status_code
The response status as integer.

direct_passthrough
If direct_passthrough=True was passed to the response object or if this at-
tribute was set to True before using the response object as WSGI application,
the wrapped iterator is returned unchanged. This makes it possible to pass
a special wsgi.file_wrapper to the response object. See wrap_file() for more
details.

__call__(environ, start_response)
Process this response as WSGI application.

Parameters

• environ – the WSGI environment.

• start_response – the response callable provided by the
WSGI server.

Returns an application iterator

_ensure_sequence(mutable=False)
This method can be called by methods that need a sequence. If mutable is
true, it will also ensure that the response sequence is a standard Python list.

New in version 0.6.

autocorrect_location_header = True
Should this response object correct the location header to be RFC confor-
mant? This is true by default.

New in version 0.8.

automatically_set_content_length = True
Should this response object automatically set the content-length header if
possible? This is true by default.

New in version 0.8.

calculate_content_length()
Returns the content length if available or None otherwise.

call_on_close(func)
Adds a function to the internal list of functions that should be called as
part of closing down the response. Since 0.7 this function also returns the
function that was passed so that this can be used as a decorator.

New in version 0.6.

charset = ‘utf-8’
the charset of the response.

65

close()
Close the wrapped response if possible. You can also use the object in a with
statement which will automatically close it.

New in version 0.9: Can now be used in a with statement.

data
A descriptor that calls get_data() and set_data(). This should not be used
and will eventually get deprecated.

default_mimetype = ‘text/plain’
the default mimetype if none is provided.

default_status = 200
the default status if none is provided.

delete_cookie(key, path=’/’, domain=None)
Delete a cookie. Fails silently if key doesn’t exist.

Parameters

• key – the key (name) of the cookie to be deleted.

• path – if the cookie that should be deleted was limited to a
path, the path has to be defined here.

• domain – if the cookie that should be deleted was limited to a
domain, that domain has to be defined here.

classmethod force_type(response, environ=None)
Enforce that the WSGI response is a response object of the current type.
Werkzeug will use the BaseResponse internally in many situations like the
exceptions. If you call get_response() on an exception you will get back a
regular BaseResponse object, even if you are using a custom subclass.

This method can enforce a given response type, and it will also convert
arbitrary WSGI callables into response objects if an environ is provided:

convert a Werkzeug response object into an instance of the
MyResponseClass subclass.
response = MyResponseClass.force_type(response)

convert any WSGI application into a response object
response = MyResponseClass.force_type(response, environ)

This is especially useful if you want to post-process responses in the main
dispatcher and use functionality provided by your subclass.

Keep in mind that this will modify response objects in place if possible!

Parameters

• response – a response object or wsgi application.

• environ – a WSGI environment object.

Returns a response object.

66

freeze()
Call this method if you want to make your response object ready for being
pickled. This buffers the generator if there is one. It will also set the Content-
Length header to the length of the body.

Changed in version 0.6: The Content-Length header is now set.

classmethod from_app(app, environ, buffered=False)
Create a new response object from an application output. This works best if
you pass it an application that returns a generator all the time. Sometimes
applications may use the write() callable returned by the start_response func-
tion. This tries to resolve such edge cases automatically. But if you don’t get
the expected output you should set buffered to True which enforces buffering.

Parameters

• app – the WSGI application to execute.

• environ – the WSGI environment to execute against.

• buffered – set to True to enforce buffering.

Returns a response object.

get_app_iter(environ)
Returns the application iterator for the given environ. Depending on the
request method and the current status code the return value might be an
empty response rather than the one from the response.

If the request method is HEAD or the status code is in a range where the
HTTP specification requires an empty response, an empty iterable is re-
turned.

New in version 0.6.

Parameters environ – the WSGI environment of the request.

Returns a response iterable.

get_data(as_text=False)
The string representation of the request body. Whenever you call this prop-
erty the request iterable is encoded and flattened. This can lead to unwanted
behavior if you stream big data.

This behavior can be disabled by setting implicit_sequence_conversion to
False.

If as_text is set to True the return value will be a decoded unicode string.

New in version 0.9.

get_wsgi_headers(environ)
This is automatically called right before the response is started and returns
headers modified for the given environment. It returns a copy of the head-
ers from the response with some modifications applied if necessary.

67

For example the location header (if present) is joined with the root URL of
the environment. Also the content length is automatically set to zero here
for certain status codes.

Changed in version 0.6: Previously that function was called fix_headers and
modified the response object in place. Also since 0.6, IRIs in location and
content-location headers are handled properly.

Also starting with 0.6, Werkzeug will attempt to set the content length if it
is able to figure it out on its own. This is the case if all the strings in the
response iterable are already encoded and the iterable is buffered.

Parameters environ – the WSGI environment of the request.

Returns returns a new Headers object.

get_wsgi_response(environ)
Returns the final WSGI response as tuple. The first item in the tuple is the
application iterator, the second the status and the third the list of headers.
The response returned is created specially for the given environment. For
example if the request method in the WSGI environment is 'HEAD' the re-
sponse will be empty and only the headers and status code will be present.

New in version 0.6.

Parameters environ – the WSGI environment of the request.

Returns an (app_iter, status, headers) tuple.

implicit_sequence_conversion = True
if set to False accessing properties on the response object will not try to con-
sume the response iterator and convert it into a list.

New in version 0.6.2: That attribute was previously called im-
plicit_seqence_conversion. (Notice the typo). If you did use this feature, you
have to adapt your code to the name change.

is_sequence
If the iterator is buffered, this property will be True. A response object will
consider an iterator to be buffered if the response attribute is a list or tuple.

New in version 0.6.

is_streamed
If the response is streamed (the response is not an iterable with a length
information) this property is True. In this case streamed means that there
is no information about the number of iterations. This is usually True if a
generator is passed to the response object.

This is useful for checking before applying some sort of post filtering that
should not take place for streamed responses.

iter_encoded()
Iter the response encoded with the encoding of the response. If the response

68

object is invoked as WSGI application the return value of this method is
used as application iterator unless direct_passthrough was activated.

make_sequence()
Converts the response iterator in a list. By default this happens automati-
cally if required. If implicit_sequence_conversion is disabled, this method is
not automatically called and some properties might raise exceptions. This
also encodes all the items.

New in version 0.6.

max_cookie_size = 4093
Warn if a cookie header exceeds this size. The default, 4093, should be safely
supported by most browsers. A cookie larger than this size will still be sent,
but it may be ignored or handled incorrectly by some browsers. Set to 0 to
disable this check.

New in version 0.13.

set_cookie(key, value=’‘, max_age=None, expires=None, path=’/’, do-
main=None, secure=False, httponly=False)

Sets a cookie. The parameters are the same as in the cookie Morsel object in
the Python standard library but it accepts unicode data, too.

A warning is raised if the size of the cookie header exceeds
max_cookie_size, but the header will still be set.

Parameters

• key – the key (name) of the cookie to be set.

• value – the value of the cookie.

• max_age – should be a number of seconds, or None (default)
if the cookie should last only as long as the client’s browser
session.

• expires – should be a datetime object or UNIX timestamp.

• path – limits the cookie to a given path, per default it will
span the whole domain.

• domain – if you want to set a cross-domain cookie. For exam-
ple, domain=".example.com" will set a cookie that is readable
by the domain www.example.com, foo.example.com etc. Oth-
erwise, a cookie will only be readable by the domain that set
it.

• secure – If True, the cookie will only be available via HTTPS

• httponly – disallow JavaScript to access the cookie. This is an
extension to the cookie standard and probably not supported
by all browsers.

set_data(value)
Sets a new string as response. The value set must either by a unicode or

69

http://browsercookielimits.squawky.net/

bytestring. If a unicode string is set it’s encoded automatically to the charset
of the response (utf-8 by default).

New in version 0.9.

status
The HTTP Status code

status_code
The HTTP Status code as number

Mixin Classes

Werkzeug also provides helper mixins for various HTTP related functionality such as
etags, cache control, user agents etc. When subclassing you can mix those classes in
to extend the functionality of the BaseRequest or BaseResponse object. Here a small
example for a request object that parses accept headers:

from werkzeug.wrappers import AcceptMixin, BaseRequest

class Request(BaseRequest, AcceptMixin):
pass

The Request and Response classes subclass the BaseRequest and BaseResponse classes
and implement all the mixins Werkzeug provides:

class werkzeug.wrappers.Request(environ, populate_request=True, shallow=False)
Full featured request object implementing the following mixins:

•AcceptMixin for accept header parsing

•ETagRequestMixin for etag and cache control handling

•UserAgentMixin for user agent introspection

•AuthorizationMixin for http auth handling

•CommonRequestDescriptorsMixin for common headers

class werkzeug.wrappers.Response(response=None, status=None, headers=None,
mimetype=None, content_type=None, di-
rect_passthrough=False)

Full featured response object implementing the following mixins:

•ETagResponseMixin for etag and cache control handling

•ResponseStreamMixin to add support for the stream property

•CommonResponseDescriptorsMixin for various HTTP descriptors

•WWWAuthenticateMixin for HTTP authentication support

class werkzeug.wrappers.AcceptMixin
A mixin for classes with an environ attribute to get all the HTTP accept headers
as Accept objects (or subclasses thereof).

70

accept_charsets
List of charsets this client supports as CharsetAccept object.

accept_encodings
List of encodings this client accepts. Encodings in a HTTP term are compres-
sion encodings such as gzip. For charsets have a look at accept_charset.

accept_languages
List of languages this client accepts as LanguageAccept object.

accept_mimetypes
List of mimetypes this client supports as MIMEAccept object.

class werkzeug.wrappers.AuthorizationMixin
Adds an authorization property that represents the parsed value of the Autho-
rization header as Authorization object.

authorization
The Authorization object in parsed form.

class werkzeug.wrappers.ETagRequestMixin
Add entity tag and cache descriptors to a request object or object with a WSGI
environment available as environ. This not only provides access to etags but also
to the cache control header.

cache_control
A RequestCacheControl object for the incoming cache control headers.

if_match
An object containing all the etags in the If-Match header.

Return type ETags

if_modified_since
The parsed If-Modified-Since header as datetime object.

if_none_match
An object containing all the etags in the If-None-Match header.

Return type ETags

if_range
The parsed If-Range header.

New in version 0.7.

Return type IfRange

if_unmodified_since
The parsed If-Unmodified-Since header as datetime object.

range
The parsed Range header.

New in version 0.7.

Return type Range

71

class werkzeug.wrappers.ETagResponseMixin
Adds extra functionality to a response object for etag and cache handling. This
mixin requires an object with at least a headers object that implements a dict like
interface similar to Headers.

If you want the freeze() method to automatically add an etag, you have to mixin
this method before the response base class. The default response class does not
do that.

accept_ranges
The Accept-Ranges header. Even though the name would indicate that mul-
tiple values are supported, it must be one string token only.

The values 'bytes' and 'none' are common.

New in version 0.7.

add_etag(overwrite=False, weak=False)
Add an etag for the current response if there is none yet.

cache_control
The Cache-Control general-header field is used to specify directives that
MUST be obeyed by all caching mechanisms along the request/response
chain.

content_range
The Content-Range header as ContentRange object. Even if the header is not
set it wil provide such an object for easier manipulation.

New in version 0.7.

freeze(no_etag=False)
Call this method if you want to make your response object ready for picke-
ling. This buffers the generator if there is one. This also sets the etag unless
no_etag is set to True.

get_etag()
Return a tuple in the form (etag, is_weak). If there is no ETag the return
value is (None, None).

make_conditional(request_or_environ, accept_ranges=False, com-
plete_length=None)

Make the response conditional to the request. This method works best if an
etag was defined for the response already. The add_etag method can be used
to do that. If called without etag just the date header is set.

This does nothing if the request method in the request or environ is any-
thing but GET or HEAD.

For optimal performance when handling range requests, it’s recommended
that your response data object implements seekable, seek and tell methods
as described by io.IOBase. Objects returned by wrap_file() automatically
implement those methods.

72

https://docs.python.org/dev/library/io.html#io.IOBase

It does not remove the body of the response because that’s something the
__call__() function does for us automatically.

Returns self so that you can do return resp.make_conditional(req) but
modifies the object in-place.

Parameters

• request_or_environ – a request object or WSGI environment
to be used to make the response conditional against.

• accept_ranges – This parameter dictates the value of Accept-
Ranges header. If False (default), the header is not set. If True,
it will be set to "bytes". If None, it will be set to "none". If it’s
a string, it will use this value.

• complete_length – Will be used only in valid Range Requests.
It will set Content-Range complete length value and compute
Content-Length real value. This parameter is mandatory for
successful Range Requests completion.

Raises RequestedRangeNotSatisfiable if Range header could not
be parsed or satisfied.

set_etag(etag, weak=False)
Set the etag, and override the old one if there was one.

class werkzeug.wrappers.ResponseStreamMixin
Mixin for BaseRequest subclasses. Classes that inherit from this mixin will au-
tomatically get a stream property that provides a write-only interface to the re-
sponse iterable.

stream
The response iterable as write-only stream.

class werkzeug.wrappers.CommonRequestDescriptorsMixin
A mixin for BaseRequest subclasses. Request objects that mix this class in will
automatically get descriptors for a couple of HTTP headers with automatic type
conversion.

New in version 0.5.

content_encoding
The Content-Encoding entity-header field is used as a modifier to the
media-type. When present, its value indicates what additional content cod-
ings have been applied to the entity-body, and thus what decoding mecha-
nisms must be applied in order to obtain the media-type referenced by the
Content-Type header field.

New in version 0.9.

content_length
The Content-Length entity-header field indicates the size of the entity-body
in bytes or, in the case of the HEAD method, the size of the entity-body that
would have been sent had the request been a GET.

73

content_md5

The Content-MD5 entity-header field, as defined in RFC 1864, is an
MD5 digest of the entity-body for the purpose of providing an end-
to-end message integrity check (MIC) of the entity-body. (Note:
a MIC is good for detecting accidental modification of the entity-
body in transit, but is not proof against malicious attacks.)

New in version 0.9.

content_type
The Content-Type entity-header field indicates the media type of the entity-
body sent to the recipient or, in the case of the HEAD method, the media
type that would have been sent had the request been a GET.

date
The Date general-header field represents the date and time at which the
message was originated, having the same semantics as orig-date in RFC
822.

max_forwards
The Max-Forwards request-header field provides a mechanism with the
TRACE and OPTIONS methods to limit the number of proxies or gateways
that can forward the request to the next inbound server.

mimetype
Like content_type, but without parameters (eg, without charset, type etc.)
and always lowercase. For example if the content type is text/HTML;
charset=utf-8 the mimetype would be 'text/html'.

mimetype_params
The mimetype parameters as dict. For example if the content type is text/
html; charset=utf-8 the params would be {'charset': 'utf-8'}.

pragma
The Pragma general-header field is used to include implementation-specific
directives that might apply to any recipient along the request/response
chain. All pragma directives specify optional behavior from the viewpoint
of the protocol; however, some systems MAY require that behavior be con-
sistent with the directives.

referrer
The Referer[sic] request-header field allows the client to specify, for the
server’s benefit, the address (URI) of the resource from which the Request-
URI was obtained (the “referrer”, although the header field is misspelled).

class werkzeug.wrappers.CommonResponseDescriptorsMixin
A mixin for BaseResponse subclasses. Response objects that mix this class in will
automatically get descriptors for a couple of HTTP headers with automatic type
conversion.

age
The Age response-header field conveys the sender’s estimate of the amount

74

of time since the response (or its revalidation) was generated at the origin
server.

Age values are non-negative decimal integers, representing time in seconds.

allow
The Allow entity-header field lists the set of methods supported by the re-
source identified by the Request-URI. The purpose of this field is strictly to
inform the recipient of valid methods associated with the resource. An Al-
low header field MUST be present in a 405 (Method Not Allowed) response.

content_encoding
The Content-Encoding entity-header field is used as a modifier to the
media-type. When present, its value indicates what additional content cod-
ings have been applied to the entity-body, and thus what decoding mecha-
nisms must be applied in order to obtain the media-type referenced by the
Content-Type header field.

content_language
The Content-Language entity-header field describes the natural language(s)
of the intended audience for the enclosed entity. Note that this might not be
equivalent to all the languages used within the entity-body.

content_length
The Content-Length entity-header field indicates the size of the entity-body,
in decimal number of OCTETs, sent to the recipient or, in the case of the
HEAD method, the size of the entity-body that would have been sent had
the request been a GET.

content_location
The Content-Location entity-header field MAY be used to supply the re-
source location for the entity enclosed in the message when that entity is
accessible from a location separate from the requested resource’s URI.

content_md5
The Content-MD5 entity-header field, as defined in RFC 1864, is an MD5 di-
gest of the entity-body for the purpose of providing an end-to-end message
integrity check (MIC) of the entity-body. (Note: a MIC is good for detecting
accidental modification of the entity-body in transit, but is not proof against
malicious attacks.)

content_type
The Content-Type entity-header field indicates the media type of the entity-
body sent to the recipient or, in the case of the HEAD method, the media
type that would have been sent had the request been a GET.

date
The Date general-header field represents the date and time at which the
message was originated, having the same semantics as orig-date in RFC
822.

expires
The Expires entity-header field gives the date/time after which the response

75

is considered stale. A stale cache entry may not normally be returned by a
cache.

last_modified
The Last-Modified entity-header field indicates the date and time at which
the origin server believes the variant was last modified.

location
The Location response-header field is used to redirect the recipient to a lo-
cation other than the Request-URI for completion of the request or identifi-
cation of a new resource.

mimetype
The mimetype (content type without charset etc.)

mimetype_params
The mimetype parameters as dict. For example if the content type is text/
html; charset=utf-8 the params would be {'charset': 'utf-8'}.

New in version 0.5.

retry_after
The Retry-After response-header field can be used with a 503 (Service Un-
available) response to indicate how long the service is expected to be un-
available to the requesting client.

Time in seconds until expiration or date.

vary
The Vary field value indicates the set of request-header fields that fully de-
termines, while the response is fresh, whether a cache is permitted to use
the response to reply to a subsequent request without revalidation.

class werkzeug.wrappers.WWWAuthenticateMixin
Adds a www_authenticate property to a response object.

www_authenticate
The WWW-Authenticate header in a parsed form.

class werkzeug.wrappers.UserAgentMixin
Adds a user_agent attribute to the request object which contains the parsed user
agent of the browser that triggered the request as a UserAgent object.

user_agent
The current user agent.

76

CHAPTER 11

URL Routing

When it comes to combining multiple controller or view functions (however you want
to call them), you need a dispatcher. A simple way would be applying regular expres-
sion tests on PATH_INFO and call registered callback functions that return the value.

Werkzeug provides a much more powerful system, similar to Routes. All the objects
mentioned on this page must be imported from werkzeug.routing, not from werkzeug!

Quickstart

Here is a simple example which could be the URL definition for a blog:

from werkzeug.routing import Map, Rule, NotFound, RequestRedirect

url_map = Map([
Rule('/', endpoint='blog/index'),
Rule('/<int:year>/', endpoint='blog/archive'),
Rule('/<int:year>/<int:month>/', endpoint='blog/archive'),
Rule('/<int:year>/<int:month>/<int:day>/', endpoint='blog/archive'),
Rule('/<int:year>/<int:month>/<int:day>/<slug>',

endpoint='blog/show_post'),
Rule('/about', endpoint='blog/about_me'),
Rule('/feeds/', endpoint='blog/feeds'),
Rule('/feeds/<feed_name>.rss', endpoint='blog/show_feed')

])

def application(environ, start_response):
urls = url_map.bind_to_environ(environ)

77

http://routes.groovie.org/

try:
endpoint, args = urls.match()

except HTTPException, e:
return e(environ, start_response)

start_response('200 OK', [('Content-Type', 'text/plain')])
return ['Rule points to %r with arguments %r' % (endpoint, args)]

So what does that do? First of all we create a new Map which stores a bunch of URL
rules. Then we pass it a list of Rule objects.

Each Rule object is instantiated with a string that represents a rule and an endpoint
which will be the alias for what view the rule represents. Multiple rules can have the
same endpoint, but should have different arguments to allow URL construction.

The format for the URL rules is straightforward, but explained in detail below.

Inside the WSGI application we bind the url_map to the current request which will
return a new MapAdapter. This url_map adapter can then be used to match or build
domains for the current request.

The MapAdapter.match() method can then either return a tuple in the form
(endpoint, args) or raise one of the three exceptions NotFound, MethodNotAllowed,
or RequestRedirect. For more details about those exceptions have a look at the docu-
mentation of the MapAdapter.match() method.

Rule Format

Rule strings basically are just normal URL paths with placeholders in the format
<converter(arguments):name>, where converter and the arguments are optional. If no
converter is defined, the default converter is used (which means string in the normal
configuration).

URL rules that end with a slash are branch URLs, others are leaves. If you have
strict_slashes enabled (which is the default), all branch URLs that are visited without a
trailing slash will trigger a redirect to the same URL with that slash appended.

The list of converters can be extended, the default converters are explained below.

Builtin Converters

Here a list of converters that come with Werkzeug:

class werkzeug.routing.UnicodeConverter(map, minlength=1, maxlength=None,
length=None)

This converter is the default converter and accepts any string but only one path
segment. Thus the string can not include a slash.

This is the default validator.

78

Example:

Rule('/pages/<page>'),
Rule('/<string(length=2):lang_code>')

Parameters

• map – the Map.

• minlength – the minimum length of the string. Must be greater
or equal 1.

• maxlength – the maximum length of the string.

• length – the exact length of the string.

class werkzeug.routing.PathConverter(map)
Like the default UnicodeConverter, but it also matches slashes. This is useful for
wikis and similar applications:

Rule('/<path:wikipage>')
Rule('/<path:wikipage>/edit')

Parameters map – the Map.

class werkzeug.routing.AnyConverter(map, *items)
Matches one of the items provided. Items can either be Python identifiers or
strings:

Rule('/<any(about, help, imprint, class, "foo,bar"):page_name>')

Parameters

• map – the Map.

• items – this function accepts the possible items as positional
arguments.

class werkzeug.routing.IntegerConverter(map, fixed_digits=0, min=None,
max=None)

This converter only accepts integer values:

Rule('/page/<int:page>')

This converter does not support negative values.

Parameters

• map – the Map.

• fixed_digits – the number of fixed digits in the URL. If you
set this to 4 for example, the application will only match if the
url looks like /0001/. The default is variable length.

79

• min – the minimal value.

• max – the maximal value.

class werkzeug.routing.FloatConverter(map, min=None, max=None)
This converter only accepts floating point values:

Rule('/probability/<float:probability>')

This converter does not support negative values.

Parameters

• map – the Map.

• min – the minimal value.

• max – the maximal value.

class werkzeug.routing.UUIDConverter(map)
This converter only accepts UUID strings:

Rule('/object/<uuid:identifier>')

New in version 0.10.

Parameters map – the Map.

Maps, Rules and Adapters

class werkzeug.routing.Map(rules=None, default_subdomain=’‘, charset=’utf-8’,
strict_slashes=True, redirect_defaults=True, convert-
ers=None, sort_parameters=False, sort_key=None, en-
coding_errors=’replace’, host_matching=False)

The map class stores all the URL rules and some configuration parameters. Some
of the configuration values are only stored on the Map instance since those affect
all rules, others are just defaults and can be overridden for each rule. Note that
you have to specify all arguments besides the rules as keyword arguments!

Parameters

• rules – sequence of url rules for this map.

• default_subdomain – The default subdomain for rules without
a subdomain defined.

• charset – charset of the url. defaults to "utf-8"

• strict_slashes – Take care of trailing slashes.

• redirect_defaults – This will redirect to the default rule if it
wasn’t visited that way. This helps creating unique URLs.

80

• converters – A dict of converters that adds additional convert-
ers to the list of converters. If you redefine one converter this
will override the original one.

• sort_parameters – If set to True the url parameters are sorted.
See url_encode for more details.

• sort_key – The sort key function for url_encode.

• encoding_errors – the error method to use for decoding

• host_matching – if set to True it enables the host matching fea-
ture and disables the subdomain one. If enabled the host pa-
rameter to rules is used instead of the subdomain one.

New in version 0.5: sort_parameters and sort_key was added.

New in version 0.7: encoding_errors and host_matching was added.

converters
The dictionary of converters. This can be modified after the class was cre-
ated, but will only affect rules added after the modification. If the rules
are defined with the list passed to the class, the converters parameter to the
constructor has to be used instead.

add(rulefactory)
Add a new rule or factory to the map and bind it. Requires that the rule is
not bound to another map.

Parameters rulefactory – a Rule or RuleFactory

bind(server_name, script_name=None, subdomain=None, url_scheme=’http’, de-
fault_method=’GET’, path_info=None, query_args=None)

Return a new MapAdapter with the details specified to the call. Note
that script_name will default to '/' if not further specified or None. The
server_name at least is a requirement because the HTTP RFC requires abso-
lute URLs for redirects and so all redirect exceptions raised by Werkzeug
will contain the full canonical URL.

If no path_info is passed to match() it will use the default path info passed to
bind. While this doesn’t really make sense for manual bind calls, it’s useful
if you bind a map to a WSGI environment which already contains the path
info.

subdomain will default to the default_subdomain for this map if no defined. If
there is no default_subdomain you cannot use the subdomain feature.

New in version 0.7: query_args added

New in version 0.8: query_args can now also be a string.

bind_to_environ(environ, server_name=None, subdomain=None)
Like bind() but you can pass it an WSGI environment and it will fetch
the information from that dictionary. Note that because of limitations
in the protocol there is no way to get the current subdomain and real
server_name from the environment. If you don’t provide it, Werkzeug will

81

use SERVER_NAME and SERVER_PORT (or HTTP_HOST if provided) as
used server_name with disabled subdomain feature.

If subdomain is None but an environment and a server name is provided it
will calculate the current subdomain automatically. Example: server_name
is 'example.com' and the SERVER_NAME in the wsgi environ is 'staging.
dev.example.com' the calculated subdomain will be 'staging.dev'.

If the object passed as environ has an environ attribute, the value of this at-
tribute is used instead. This allows you to pass request objects. Additionally
PATH_INFO added as a default of the MapAdapter so that you don’t have to
pass the path info to the match method.

Changed in version 0.5: previously this method accepted a bogus calcu-
late_subdomain parameter that did not have any effect. It was removed be-
cause of that.

Changed in version 0.8: This will no longer raise a ValueError when an
unexpected server name was passed.

Parameters

• environ – a WSGI environment.

• server_name – an optional server name hint (see above).

• subdomain – optionally the current subdomain (see above).

default_converters = ImmutableDict({‘int’: <class ‘werkzeug.routing.IntegerConverter’>, ‘string’: <class ‘werkzeug.routing.UnicodeConverter’>, ‘default’: <class ‘werkzeug.routing.UnicodeConverter’>, ‘path’: <class ‘werkzeug.routing.PathConverter’>, ‘float’: <class ‘werkzeug.routing.FloatConverter’>, ‘any’: <class ‘werkzeug.routing.AnyConverter’>, ‘uuid’: <class ‘werkzeug.routing.UUIDConverter’>})
New in version 0.6: a dict of default converters to be used.

is_endpoint_expecting(endpoint, *arguments)
Iterate over all rules and check if the endpoint expects the arguments pro-
vided. This is for example useful if you have some URLs that expect a lan-
guage code and others that do not and you want to wrap the builder a bit so
that the current language code is automatically added if not provided but
endpoints expect it.

Parameters

• endpoint – the endpoint to check.

• arguments – this function accepts one or more arguments as
positional arguments. Each one of them is checked.

iter_rules(endpoint=None)
Iterate over all rules or the rules of an endpoint.

Parameters endpoint – if provided only the rules for that endpoint
are returned.

Returns an iterator

update()
Called before matching and building to keep the compiled rules in the cor-
rect order after things changed.

82

class werkzeug.routing.MapAdapter(map, server_name, script_name, subdomain,
url_scheme, path_info, default_method,
query_args=None)

Returned by Map.bind() or Map.bind_to_environ() and does the URL matching
and building based on runtime information.

allowed_methods(path_info=None)
Returns the valid methods that match for a given path.

New in version 0.7.

build(endpoint, values=None, method=None, force_external=False, ap-
pend_unknown=True)

Building URLs works pretty much the other way round. Instead of match
you call build and pass it the endpoint and a dict of arguments for the place-
holders.

The build function also accepts an argument called force_external which, if
you set it to True will force external URLs. Per default external URLs (in-
clude the server name) will only be used if the target URL is on a different
subdomain.

>>> m = Map([
... Rule('/', endpoint='index'),
... Rule('/downloads/', endpoint='downloads/index'),
... Rule('/downloads/<int:id>', endpoint='downloads/show')
...])
>>> urls = m.bind("example.com", "/")
>>> urls.build("index", {})
'/'
>>> urls.build("downloads/show", {'id': 42})
'/downloads/42'
>>> urls.build("downloads/show", {'id': 42}, force_external=True)
'http://example.com/downloads/42'

Because URLs cannot contain non ASCII data you will always get
bytestrings back. Non ASCII characters are urlencoded with the charset
defined on the map instance.

Additional values are converted to unicode and appended to the URL as
URL querystring parameters:

>>> urls.build("index", {'q': 'My Searchstring'})
'/?q=My+Searchstring'

When processing those additional values, lists are furthermore interpreted
as multiple values (as per werkzeug.datastructures.MultiDict):

>>> urls.build("index", {'q': ['a', 'b', 'c']})
'/?q=a&q=b&q=c'

If a rule does not exist when building a BuildError exception is raised.

83

The build method accepts an argument called method which allows you to
specify the method you want to have an URL built for if you have different
methods for the same endpoint specified.

New in version 0.6: the append_unknown parameter was added.

Parameters

• endpoint – the endpoint of the URL to build.

• values – the values for the URL to build. Unhandled values
are appended to the URL as query parameters.

• method – the HTTP method for the rule if there are different
URLs for different methods on the same endpoint.

• force_external – enforce full canonical external URLs. If the
URL scheme is not provided, this will generate a protocol-
relative URL.

• append_unknown – unknown parameters are appended to the
generated URL as query string argument. Disable this if you
want the builder to ignore those.

dispatch(view_func, path_info=None, method=None,
catch_http_exceptions=False)

Does the complete dispatching process. view_func is called with the end-
point and a dict with the values for the view. It should look up the view
function, call it, and return a response object or WSGI application. http
exceptions are not caught by default so that applications can display nicer
error messages by just catching them by hand. If you want to stick with the
default error messages you can pass it catch_http_exceptions=True and it
will catch the http exceptions.

Here a small example for the dispatch usage:

from werkzeug.wrappers import Request, Response
from werkzeug.wsgi import responder
from werkzeug.routing import Map, Rule

def on_index(request):
return Response('Hello from the index')

url_map = Map([Rule('/', endpoint='index')])
views = {'index': on_index}

@responder
def application(environ, start_response):

request = Request(environ)
urls = url_map.bind_to_environ(environ)
return urls.dispatch(lambda e, v: views[e](request, **v),

catch_http_exceptions=True)

84

Keep in mind that this method might return exception objects, too, so use
Response.force_type to get a response object.

Parameters

• view_func – a function that is called with the endpoint as first
argument and the value dict as second. Has to dispatch to the
actual view function with this information. (see above)

• path_info – the path info to use for matching. Overrides the
path info specified on binding.

• method – the HTTP method used for matching. Overrides the
method specified on binding.

• catch_http_exceptions – set to True to catch any of the
werkzeug HTTPExceptions.

get_default_redirect(rule, method, values, query_args)
A helper that returns the URL to redirect to if it finds one. This is used for
default redirecting only.

Internal

get_host(domain_part)
Figures out the full host name for the given domain part. The domain part
is a subdomain in case host matching is disabled or a full host name.

make_alias_redirect_url(path, endpoint, values, method, query_args)
Internally called to make an alias redirect URL.

make_redirect_url(path_info, query_args=None, domain_part=None)
Creates a redirect URL.

Internal

match(path_info=None, method=None, return_rule=False, query_args=None)
The usage is simple: you just pass the match method the current path info
as well as the method (which defaults to GET). The following things can
then happen:

•you receive a NotFound exception that indicates that no URL is match-
ing. A NotFound exception is also a WSGI application you can call to
get a default page not found page (happens to be the same object as
werkzeug.exceptions.NotFound)

•you receive a MethodNotAllowed exception that indicates that there is
a match for this URL but not for the current request method. This is
useful for RESTful applications.

•you receive a RequestRedirect exception with a new_url attribute. This
exception is used to notify you about a request Werkzeug requests from
your WSGI application. This is for example the case if you request /foo
although the correct URL is /foo/ You can use the RequestRedirect in-

85

stance as response-like object similar to all other subclasses of HTTPEx-
ception.

•you get a tuple in the form (endpoint, arguments) if there is a match
(unless return_rule is True, in which case you get a tuple in the form
(rule, arguments))

If the path info is not passed to the match method the default path info of
the map is used (defaults to the root URL if not defined explicitly).

All of the exceptions raised are subclasses of HTTPException so they can be
used as WSGI responses. The will all render generic error or redirect pages.

Here is a small example for matching:

>>> m = Map([
... Rule('/', endpoint='index'),
... Rule('/downloads/', endpoint='downloads/index'),
... Rule('/downloads/<int:id>', endpoint='downloads/show')
...])
>>> urls = m.bind("example.com", "/")
>>> urls.match("/", "GET")
('index', {})
>>> urls.match("/downloads/42")
('downloads/show', {'id': 42})

And here is what happens on redirect and missing URLs:

>>> urls.match("/downloads")
Traceback (most recent call last):
...

RequestRedirect: http://example.com/downloads/
>>> urls.match("/missing")
Traceback (most recent call last):
...

NotFound: 404 Not Found

Parameters

• path_info – the path info to use for matching. Overrides the
path info specified on binding.

• method – the HTTP method used for matching. Overrides the
method specified on binding.

• return_rule – return the rule that matched instead of just the
endpoint (defaults to False).

• query_args – optional query arguments that are used for au-
tomatic redirects as string or dictionary. It’s currently not pos-
sible to use the query arguments for URL matching.

New in version 0.6: return_rule was added.

86

New in version 0.7: query_args was added.

Changed in version 0.8: query_args can now also be a string.

test(path_info=None, method=None)
Test if a rule would match. Works like match but returns True if the URL
matches, or False if it does not exist.

Parameters

• path_info – the path info to use for matching. Overrides the
path info specified on binding.

• method – the HTTP method used for matching. Overrides the
method specified on binding.

class werkzeug.routing.Rule(string, defaults=None, subdomain=None, meth-
ods=None, build_only=False, endpoint=None,
strict_slashes=None, redirect_to=None, alias=False,
host=None)

A Rule represents one URL pattern. There are some options for Rule that change
the way it behaves and are passed to the Rule constructor. Note that besides the
rule-string all arguments must be keyword arguments in order to not break the
application on Werkzeug upgrades.

string Rule strings basically are just normal URL paths with placeholders in the
format <converter(arguments):name> where the converter and the argu-
ments are optional. If no converter is defined the default converter is used
which means string in the normal configuration.

URL rules that end with a slash are branch URLs, others are leaves. If you
have strict_slashes enabled (which is the default), all branch URLs that are
matched without a trailing slash will trigger a redirect to the same URL with
the missing slash appended.

The converters are defined on the Map.

endpoint The endpoint for this rule. This can be anything. A reference to a
function, a string, a number etc. The preferred way is using a string because
the endpoint is used for URL generation.

defaults An optional dict with defaults for other rules with the same endpoint.
This is a bit tricky but useful if you want to have unique URLs:

url_map = Map([
Rule('/all/', defaults={'page': 1}, endpoint='all_entries'),
Rule('/all/page/<int:page>', endpoint='all_entries')

])

If a user now visits http://example.com/all/page/1 he will be redirected
to http://example.com/all/. If redirect_defaults is disabled on the Map in-
stance this will only affect the URL generation.

subdomain The subdomain rule string for this rule. If not specified the rule only
matches for the default_subdomain of the map. If the map is not bound to a

87

subdomain this feature is disabled.

Can be useful if you want to have user profiles on different subdomains and
all subdomains are forwarded to your application:

url_map = Map([
Rule('/', subdomain='<username>', endpoint='user/homepage'),
Rule('/stats', subdomain='<username>', endpoint='user/stats')

])

methods A sequence of http methods this rule applies to. If not specified, all
methods are allowed. For example this can be useful if you want different
endpoints for POST and GET. If methods are defined and the path matches
but the method matched against is not in this list or in the list of another
rule for that path the error raised is of the type MethodNotAllowed rather
than NotFound. If GET is present in the list of methods and HEAD is not,
HEAD is added automatically.

Changed in version 0.6.1: HEAD is now automatically added to the meth-
ods if GET is present. The reason for this is that existing code often did not
work properly in servers not rewriting HEAD to GET automatically and it
was not documented how HEAD should be treated. This was considered a
bug in Werkzeug because of that.

strict_slashes Override the Map setting for strict_slashes only for this rule. If not
specified the Map setting is used.

build_only Set this to True and the rule will never match but will create a URL
that can be build. This is useful if you have resources on a subdomain or
folder that are not handled by the WSGI application (like static data)

redirect_to If given this must be either a string or callable. In case of a callable
it’s called with the url adapter that triggered the match and the values of
the URL as keyword arguments and has to return the target for the redirect,
otherwise it has to be a string with placeholders in rule syntax:

def foo_with_slug(adapter, id):
ask the database for the slug for the old id. this of
course has nothing to do with werkzeug.
return 'foo/' + Foo.get_slug_for_id(id)

url_map = Map([
Rule('/foo/<slug>', endpoint='foo'),
Rule('/some/old/url/<slug>', redirect_to='foo/<slug>'),
Rule('/other/old/url/<int:id>', redirect_to=foo_with_slug)

])

When the rule is matched the routing system will raise a RequestRedirect
exception with the target for the redirect.

Keep in mind that the URL will be joined against the URL root of the script
so don’t use a leading slash on the target URL unless you really mean root

88

of that domain.

alias If enabled this rule serves as an alias for another rule with the same end-
point and arguments.

host If provided and the URL map has host matching enabled this can be used
to provide a match rule for the whole host. This also means that the subdo-
main feature is disabled.

New in version 0.7: The alias and host parameters were added.

empty()
Return an unbound copy of this rule.

This can be useful if want to reuse an already bound URL for another map.
See get_empty_kwargs to override what keyword arguments are provided
to the new copy.

Rule Factories

class werkzeug.routing.RuleFactory
As soon as you have more complex URL setups it’s a good idea to use rule fac-
tories to avoid repetitive tasks. Some of them are builtin, others can be added by
subclassing RuleFactory and overriding get_rules.

get_rules(map)
Subclasses of RuleFactory have to override this method and return an iter-
able of rules.

class werkzeug.routing.Subdomain(subdomain, rules)
All URLs provided by this factory have the subdomain set to a specific domain.
For example if you want to use the subdomain for the current language this can
be a good setup:

url_map = Map([
Rule('/', endpoint='#select_language'),
Subdomain('<string(length=2):lang_code>', [

Rule('/', endpoint='index'),
Rule('/about', endpoint='about'),
Rule('/help', endpoint='help')

])
])

All the rules except for the '#select_language' endpoint will now listen on a
two letter long subdomain that holds the language code for the current request.

class werkzeug.routing.Submount(path, rules)
Like Subdomain but prefixes the URL rule with a given string:

url_map = Map([
Rule('/', endpoint='index'),

89

Submount('/blog', [
Rule('/', endpoint='blog/index'),
Rule('/entry/<entry_slug>', endpoint='blog/show')

])
])

Now the rule 'blog/show' matches /blog/entry/<entry_slug>.

class werkzeug.routing.EndpointPrefix(prefix, rules)
Prefixes all endpoints (which must be strings for this factory) with another string.
This can be useful for sub applications:

url_map = Map([
Rule('/', endpoint='index'),
EndpointPrefix('blog/', [Submount('/blog', [

Rule('/', endpoint='index'),
Rule('/entry/<entry_slug>', endpoint='show')

])])
])

Rule Templates

class werkzeug.routing.RuleTemplate(rules)
Returns copies of the rules wrapped and expands string templates in the end-
point, rule, defaults or subdomain sections.

Here a small example for such a rule template:

from werkzeug.routing import Map, Rule, RuleTemplate

resource = RuleTemplate([
Rule('/$name/', endpoint='$name.list'),
Rule('/$name/<int:id>', endpoint='$name.show')

])

url_map = Map([resource(name='user'), resource(name='page')])

When a rule template is called the keyword arguments are used to replace the
placeholders in all the string parameters.

Custom Converters

You can easily add custom converters. The only thing you have to do is to subclass
BaseConverter and pass that new converter to the url_map. A converter has to pro-
vide two public methods: to_python and to_url, as well as a member that represents a
regular expression. Here is a small example:

90

from random import randrange
from werkzeug.routing import Rule, Map, BaseConverter, ValidationError

class BooleanConverter(BaseConverter):

def __init__(self, url_map, randomify=False):
super(BooleanConverter, self).__init__(url_map)
self.randomify = randomify
self.regex = '(?:yes|no|maybe)'

def to_python(self, value):
if value == 'maybe':

if self.randomify:
return not randrange(2)

raise ValidationError()
return value == 'yes'

def to_url(self, value):
return value and 'yes' or 'no'

url_map = Map([
Rule('/vote/<bool:werkzeug_rocks>', endpoint='vote'),
Rule('/vote/<bool(randomify=True):foo>', endpoint='foo')

], converters={'bool': BooleanConverter})

If you want that converter to be the default converter, name it 'default'.

Host Matching

New in version 0.7.

Starting with Werkzeug 0.7 it’s also possible to do matching on the whole host
names instead of just the subdomain. To enable this feature you need to pass
host_matching=True to the Map constructor and provide the host argument to all routes:

url_map = Map([
Rule('/', endpoint='www_index', host='www.example.com'),
Rule('/', endpoint='help_index', host='help.example.com')

], host_matching=True)

Variable parts are of course also possible in the host section:

url_map = Map([
Rule('/', endpoint='www_index', host='www.example.com'),
Rule('/', endpoint='user_index', host='<user>.example.com')

], host_matching=True)

91

92

CHAPTER 12

WSGI Helpers

The following classes and functions are designed to make working with the WSGI
specification easier or operate on the WSGI layer. All the functionality from this mod-
ule is available on the high-level Request/Response classes.

Iterator / Stream Helpers

These classes and functions simplify working with the WSGI application iterator and
the input stream.

class werkzeug.wsgi.ClosingIterator(iterable, callbacks=None)
The WSGI specification requires that all middlewares and gateways respect the
close callback of an iterator. Because it is useful to add another close action to a
returned iterator and adding a custom iterator is a boring task this class can be
used for that:

return ClosingIterator(app(environ, start_response), [cleanup_session,
cleanup_locals])

If there is just one close function it can be passed instead of the list.

A closing iterator is not needed if the application uses response objects and fin-
ishes the processing if the response is started:

try:
return response(environ, start_response)

finally:
cleanup_session()
cleanup_locals()

93

class werkzeug.wsgi.FileWrapper(file, buffer_size=8192)
This class can be used to convert a file-like object into an iterable. It yields
buffer_size blocks until the file is fully read.

You should not use this class directly but rather use the wrap_file() function
that uses the WSGI server’s file wrapper support if it’s available.

New in version 0.5.

If you’re using this object together with a BaseResponse you have to use the di-
rect_passthrough mode.

Parameters

• file – a file-like object with a read() method.

• buffer_size – number of bytes for one iteration.

class werkzeug.wsgi.LimitedStream(stream, limit)
Wraps a stream so that it doesn’t read more than n bytes. If the stream is ex-
hausted and the caller tries to get more bytes from it on_exhausted() is called
which by default returns an empty string. The return value of that function is
forwarded to the reader function. So if it returns an empty string read() will
return an empty string as well.

The limit however must never be higher than what the stream can output. Oth-
erwise readlines() will try to read past the limit.

Note on WSGI compliance

calls to readline() and readlines() are not WSGI compliant because it passes a
size argument to the readline methods. Unfortunately the WSGI PEP is not safely
implementable without a size argument to readline() because there is no EOF
marker in the stream. As a result of that the use of readline() is discouraged.

For the same reason iterating over the LimitedStream is not portable. It internally
calls readline().

We strongly suggest using read() only or using the make_line_iter() which
safely iterates line-based over a WSGI input stream.

Parameters

• stream – the stream to wrap.

• limit – the limit for the stream, must not be longer than what
the string can provide if the stream does not end with EOF (like
wsgi.input)

exhaust(chunk_size=65536)
Exhaust the stream. This consumes all the data left until the limit is reached.

94

Parameters chunk_size – the size for a chunk. It will read the
chunk until the stream is exhausted and throw away the results.

is_exhausted
If the stream is exhausted this attribute is True.

on_disconnect()
What should happen if a disconnect is detected? The return value of this
function is returned from read functions in case the client went away. By
default a ClientDisconnected exception is raised.

on_exhausted()
This is called when the stream tries to read past the limit. The return value
of this function is returned from the reading function.

read(size=None)
Read size bytes or if size is not provided everything is read.

Parameters size – the number of bytes read.

readline(size=None)
Reads one line from the stream.

readlines(size=None)
Reads a file into a list of strings. It calls readline() until the file is read
to the end. It does support the optional size argument if the underlaying
stream supports it for readline.

tell()
Returns the position of the stream.

New in version 0.9.

werkzeug.wsgi.make_line_iter(stream, limit=None, buffer_size=10240,
cap_at_buffer=False)

Safely iterates line-based over an input stream. If the input stream is not a
LimitedStream the limit parameter is mandatory.

This uses the stream’s read() method internally as opposite to the readline()
method that is unsafe and can only be used in violation of the WSGI specification.
The same problem applies to the __iter__ function of the input stream which calls
readline() without arguments.

If you need line-by-line processing it’s strongly recommended to iterate over the
input stream using this helper function.

Changed in version 0.8: This function now ensures that the limit was reached.

New in version 0.9: added support for iterators as input stream.

New in version 0.11.10: added support for the cap_at_buffer parameter.

Parameters

• stream – the stream or iterate to iterate over.

95

• limit – the limit in bytes for the stream. (Usually content
length. Not necessary if the stream is a LimitedStream.

• buffer_size – The optional buffer size.

• cap_at_buffer – if this is set chunks are split if they are longer
than the buffer size. Internally this is implemented that the
buffer size might be exhausted by a factor of two however.

werkzeug.wsgi.make_chunk_iter(stream, separator, limit=None, buffer_size=10240,
cap_at_buffer=False)

Works like make_line_iter() but accepts a separator which divides chunks. If
you want newline based processing you should use make_line_iter() instead
as it supports arbitrary newline markers.

New in version 0.8.

New in version 0.9: added support for iterators as input stream.

New in version 0.11.10: added support for the cap_at_buffer parameter.

Parameters

• stream – the stream or iterate to iterate over.

• separator – the separator that divides chunks.

• limit – the limit in bytes for the stream. (Usually content
length. Not necessary if the stream is otherwise already lim-
ited).

• buffer_size – The optional buffer size.

• cap_at_buffer – if this is set chunks are split if they are longer
than the buffer size. Internally this is implemented that the
buffer size might be exhausted by a factor of two however.

werkzeug.wsgi.wrap_file(environ, file, buffer_size=8192)
Wraps a file. This uses the WSGI server’s file wrapper if available or otherwise
the generic FileWrapper.

New in version 0.5.

If the file wrapper from the WSGI server is used it’s important to not iter-
ate over it from inside the application but to pass it through unchanged. If
you want to pass out a file wrapper inside a response object you have to set
direct_passthrough to True.

More information about file wrappers are available in PEP 333.

Parameters

• file – a file-like object with a read() method.

• buffer_size – number of bytes for one iteration.

96

https://www.python.org/dev/peps/pep-0333

Environ Helpers

These functions operate on the WSGI environment. They extract useful information
or perform common manipulations:

werkzeug.wsgi.get_host(environ, trusted_hosts=None)
Return the real host for the given WSGI environment. This first checks
the X-Forwarded-Host header, then the normal Host header, and finally the
SERVER_NAME environment variable (using the first one it finds).

Optionally it verifies that the host is in a list of trusted hosts. If the host is not in
there it will raise a SecurityError.

Parameters

• environ – the WSGI environment to get the host of.

• trusted_hosts – a list of trusted hosts, see host_is_trusted()
for more information.

werkzeug.wsgi.get_content_length(environ)
Returns the content length from the WSGI environment as integer. If it’s not
available None is returned.

New in version 0.9.

Parameters environ – the WSGI environ to fetch the content length
from.

werkzeug.wsgi.get_input_stream(environ, safe_fallback=True)
Returns the input stream from the WSGI environment and wraps it in the most
sensible way possible. The stream returned is not the raw WSGI stream in most
cases but one that is safe to read from without taking into account the content
length.

New in version 0.9.

Parameters

• environ – the WSGI environ to fetch the stream from.

• safe – indicates whether the function should use an empty
stream as safe fallback or just return the original WSGI input
stream if it can’t wrap it safely. The default is to return an
empty string in those cases.

werkzeug.wsgi.get_current_url(environ, root_only=False,
strip_querystring=False, host_only=False,
trusted_hosts=None)

A handy helper function that recreates the full URL as IRI for the current request
or parts of it. Here’s an example:

>>> from werkzeug.test import create_environ
>>> env = create_environ("/?param=foo", "http://localhost/script")
>>> get_current_url(env)

97

'http://localhost/script/?param=foo'
>>> get_current_url(env, root_only=True)
'http://localhost/script/'
>>> get_current_url(env, host_only=True)
'http://localhost/'
>>> get_current_url(env, strip_querystring=True)
'http://localhost/script/'

This optionally it verifies that the host is in a list of trusted hosts. If the host is
not in there it will raise a SecurityError.

Note that the string returned might contain unicode characters as the represen-
tation is an IRI not an URI. If you need an ASCII only representation you can use
the iri_to_uri() function:

>>> from werkzeug.urls import iri_to_uri
>>> iri_to_uri(get_current_url(env))
'http://localhost/script/?param=foo'

Parameters

• environ – the WSGI environment to get the current URL from.

• root_only – set True if you only want the root URL.

• strip_querystring – set to True if you don’t want the querys-
tring.

• host_only – set to True if the host URL should be returned.

• trusted_hosts – a list of trusted hosts, see host_is_trusted()
for more information.

werkzeug.wsgi.get_query_string(environ)
Returns the QUERY_STRING from the WSGI environment. This also takes care
about the WSGI decoding dance on Python 3 environments as a native string.
The string returned will be restricted to ASCII characters.

New in version 0.9.

Parameters environ – the WSGI environment object to get the query
string from.

werkzeug.wsgi.get_script_name(environ, charset=’utf-8’, errors=’replace’)
Returns the SCRIPT_NAME from the WSGI environment and properly decodes
it. This also takes care about the WSGI decoding dance on Python 3 environ-
ments. if the charset is set to None a bytestring is returned.

New in version 0.9.

Parameters

• environ – the WSGI environment object to get the path from.

98

• charset – the charset for the path, or None if no decoding
should be performed.

• errors – the decoding error handling.

werkzeug.wsgi.get_path_info(environ, charset=’utf-8’, errors=’replace’)
Returns the PATH_INFO from the WSGI environment and properly decodes it.
This also takes care about the WSGI decoding dance on Python 3 environments.
if the charset is set to None a bytestring is returned.

New in version 0.9.

Parameters

• environ – the WSGI environment object to get the path from.

• charset – the charset for the path info, or None if no decoding
should be performed.

• errors – the decoding error handling.

werkzeug.wsgi.pop_path_info(environ, charset=’utf-8’, errors=’replace’)
Removes and returns the next segment of PATH_INFO, pushing it onto
SCRIPT_NAME. Returns None if there is nothing left on PATH_INFO.

If the charset is set to None a bytestring is returned.

If there are empty segments ('/foo//bar) these are ignored but properly pushed
to the SCRIPT_NAME:

>>> env = {'SCRIPT_NAME': '/foo', 'PATH_INFO': '/a/b'}
>>> pop_path_info(env)
'a'
>>> env['SCRIPT_NAME']
'/foo/a'
>>> pop_path_info(env)
'b'
>>> env['SCRIPT_NAME']
'/foo/a/b'

New in version 0.5.

Changed in version 0.9: The path is now decoded and a charset and encoding
parameter can be provided.

Parameters environ – the WSGI environment that is modified.

werkzeug.wsgi.peek_path_info(environ, charset=’utf-8’, errors=’replace’)
Returns the next segment on the PATH_INFO or None if there is none. Works like
pop_path_info() without modifying the environment:

>>> env = {'SCRIPT_NAME': '/foo', 'PATH_INFO': '/a/b'}
>>> peek_path_info(env)
'a'
>>> peek_path_info(env)
'a'

99

If the charset is set to None a bytestring is returned.

New in version 0.5.

Changed in version 0.9: The path is now decoded and a charset and encoding
parameter can be provided.

Parameters environ – the WSGI environment that is checked.

werkzeug.wsgi.extract_path_info(environ_or_baseurl, path_or_url,
charset=’utf-8’, errors=’replace’, col-
lapse_http_schemes=True)

Extracts the path info from the given URL (or WSGI environment) and path.
The path info returned is a unicode string, not a bytestring suitable for a WSGI
environment. The URLs might also be IRIs.

If the path info could not be determined, None is returned.

Some examples:

>>> extract_path_info('http://example.com/app', '/app/hello')
u'/hello'
>>> extract_path_info('http://example.com/app',
... 'https://example.com/app/hello')
u'/hello'
>>> extract_path_info('http://example.com/app',
... 'https://example.com/app/hello',
... collapse_http_schemes=False) is None
True

Instead of providing a base URL you can also pass a WSGI environment.

New in version 0.6.

Parameters

• environ_or_baseurl – a WSGI environment dict, a base URL
or base IRI. This is the root of the application.

• path_or_url – an absolute path from the server root, a relative
path (in which case it’s the path info) or a full URL. Also ac-
cepts IRIs and unicode parameters.

• charset – the charset for byte data in URLs

• errors – the error handling on decode

• collapse_http_schemes – if set to False the algorithm does not
assume that http and https on the same server point to the
same resource.

werkzeug.wsgi.host_is_trusted(hostname, trusted_list)
Checks if a host is trusted against a list. This also takes care of port normalization.

New in version 0.9.

100

Parameters

• hostname – the hostname to check

• trusted_list – a list of hostnames to check against. If a host-
name starts with a dot it will match against all subdomains as
well.

Convenience Helpers

werkzeug.wsgi.responder(f)
Marks a function as responder. Decorate a function with it and it will automati-
cally call the return value as WSGI application.

Example:

@responder
def application(environ, start_response):

return Response('Hello World!')

werkzeug.testapp.test_app(environ, start_response)
Simple test application that dumps the environment. You can use it to check if
Werkzeug is working properly:

>>> from werkzeug.serving import run_simple
>>> from werkzeug.testapp import test_app
>>> run_simple('localhost', 3000, test_app)
* Running on http://localhost:3000/

The application displays important information from the WSGI environment, the
Python interpreter and the installed libraries.

101

102

CHAPTER 13

Filesystem Utilities

Various utilities for the local filesystem.

class werkzeug.filesystem.BrokenFilesystemWarning
The warning used by Werkzeug to signal a broken filesystem. Will only be used
once per runtime.

werkzeug.filesystem.get_filesystem_encoding()
Returns the filesystem encoding that should be used. Note that this is differ-
ent from the Python understanding of the filesystem encoding which might be
deeply flawed. Do not use this value against Python’s unicode APIs because it
might be different. See The Filesystem for the exact behavior.

The concept of a filesystem encoding in generally is not something you should
rely on. As such if you ever need to use this function except for writing wrapper
code reconsider.

103

104

CHAPTER 14

HTTP Utilities

Werkzeug provides a couple of functions to parse and generate HTTP headers that
are useful when implementing WSGI middlewares or whenever you are operating on
a lower level layer. All this functionality is also exposed from request and response
objects.

Date Functions

The following functions simplify working with times in an HTTP context. Werkzeug
uses offset-naive datetime objects internally that store the time in UTC. If you’re work-
ing with timezones in your application make sure to replace the tzinfo attribute with
a UTC timezone information before processing the values.

werkzeug.http.cookie_date(expires=None)
Formats the time to ensure compatibility with Netscape’s cookie standard.

Accepts a floating point number expressed in seconds since the epoch in, a date-
time object or a timetuple. All times in UTC. The parse_date() function can be
used to parse such a date.

Outputs a string in the format Wdy, DD-Mon-YYYY HH:MM:SS GMT.

Parameters expires – If provided that date is used, otherwise the cur-
rent.

werkzeug.http.http_date(timestamp=None)
Formats the time to match the RFC1123 date format.

Accepts a floating point number expressed in seconds since the epoch in, a date-
time object or a timetuple. All times in UTC. The parse_date() function can be

105

https://docs.python.org/dev/library/datetime.html#datetime.datetime

used to parse such a date.

Outputs a string in the format Wdy, DD Mon YYYY HH:MM:SS GMT.

Parameters timestamp – If provided that date is used, otherwise the
current.

werkzeug.http.parse_date(value)
Parse one of the following date formats into a datetime object:

Sun, 06 Nov 1994 08:49:37 GMT ; RFC 822, updated by RFC 1123
Sunday, 06-Nov-94 08:49:37 GMT ; RFC 850, obsoleted by RFC 1036
Sun Nov 6 08:49:37 1994 ; ANSI C's asctime() format

If parsing fails the return value is None.

Parameters value – a string with a supported date format.

Returns a datetime.datetime object.

Header Parsing

The following functions can be used to parse incoming HTTP headers. Because Python
does not provide data structures with the semantics required by RFC 2616, Werkzeug
implements some custom data structures that are documented separately.

werkzeug.http.parse_options_header(value, multiple=False)
Parse a Content-Type like header into a tuple with the content type and the op-
tions:

>>> parse_options_header('text/html; charset=utf8')
('text/html', {'charset': 'utf8'})

This should not be used to parse Cache-Control like headers that use a slightly
different format. For these headers use the parse_dict_header() function.

New in version 0.5.

Parameters

• value – the header to parse.

• multiple – Whether try to parse and return multiple MIME
types

Returns (mimetype, options) or (mimetype, options, mimetype, op-
tions, . . .) if multiple=True

werkzeug.http.parse_set_header(value, on_update=None)
Parse a set-like header and return a HeaderSet object:

>>> hs = parse_set_header('token, "quoted value"')

106

https://docs.python.org/dev/library/datetime.html#datetime.datetime
https://tools.ietf.org/html/rfc2616.html

The return value is an object that treats the items case-insensitively and keeps
the order of the items:

>>> 'TOKEN' in hs
True
>>> hs.index('quoted value')
1
>>> hs
HeaderSet(['token', 'quoted value'])

To create a header from the HeaderSet again, use the dump_header() function.

Parameters

• value – a set header to be parsed.

• on_update – an optional callable that is called every time a
value on the HeaderSet object is changed.

Returns a HeaderSet

werkzeug.http.parse_list_header(value)
Parse lists as described by RFC 2068 Section 2.

In particular, parse comma-separated lists where the elements of the list may
include quoted-strings. A quoted-string could contain a comma. A non-quoted
string could have quotes in the middle. Quotes are removed automatically after
parsing.

It basically works like parse_set_header() just that items may appear multiple
times and case sensitivity is preserved.

The return value is a standard list:

>>> parse_list_header('token, "quoted value"')
['token', 'quoted value']

To create a header from the list again, use the dump_header() function.

Parameters value – a string with a list header.

Returns list

werkzeug.http.parse_dict_header(value, cls=<type ‘dict’>)
Parse lists of key, value pairs as described by RFC 2068 Section 2 and convert
them into a python dict (or any other mapping object created from the type with
a dict like interface provided by the cls arugment):

>>> d = parse_dict_header('foo="is a fish", bar="as well"')
>>> type(d) is dict
True
>>> sorted(d.items())
[('bar', 'as well'), ('foo', 'is a fish')]

If there is no value for a key it will be None:

107

https://docs.python.org/dev/library/stdtypes.html#list
https://docs.python.org/dev/library/stdtypes.html#list
https://docs.python.org/dev/library/stdtypes.html#list

>>> parse_dict_header('key_without_value')
{'key_without_value': None}

To create a header from the dict again, use the dump_header() function.

Changed in version 0.9: Added support for cls argument.

Parameters

• value – a string with a dict header.

• cls – callable to use for storage of parsed results.

Returns an instance of cls

werkzeug.http.parse_accept_header(value[, class])
Parses an HTTP Accept-* header. This does not implement a complete valid
algorithm but one that supports at least value and quality extraction.

Returns a new Accept object (basically a list of (value, quality) tuples sorted
by the quality with some additional accessor methods).

The second parameter can be a subclass of Accept that is created with the parsed
values and returned.

Parameters

• value – the accept header string to be parsed.

• cls – the wrapper class for the return value (can be Accept or a
subclass thereof)

Returns an instance of cls.

werkzeug.http.parse_cache_control_header(value, on_update=None, cls=None)
Parse a cache control header. The RFC differs between response and request
cache control, this method does not. It’s your responsibility to not use the wrong
control statements.

New in version 0.5: The cls was added. If not specified an immutable
RequestCacheControl is returned.

Parameters

• value – a cache control header to be parsed.

• on_update – an optional callable that is called every time a
value on the CacheControl object is changed.

• cls – the class for the returned object. By default
RequestCacheControl is used.

Returns a cls object.

werkzeug.http.parse_authorization_header(value)
Parse an HTTP basic/digest authorization header transmitted by the web
browser. The return value is either None if the header was invalid or not given,
otherwise an Authorization object.

108

https://docs.python.org/dev/library/stdtypes.html#dict

Parameters value – the authorization header to parse.

Returns a Authorization object or None.

werkzeug.http.parse_www_authenticate_header(value, on_update=None)
Parse an HTTP WWW-Authenticate header into a WWWAuthenticate object.

Parameters

• value – a WWW-Authenticate header to parse.

• on_update – an optional callable that is called every time a
value on the WWWAuthenticate object is changed.

Returns a WWWAuthenticate object.

werkzeug.http.parse_if_range_header(value)
Parses an if-range header which can be an etag or a date. Returns a IfRange
object.

New in version 0.7.

werkzeug.http.parse_range_header(value, make_inclusive=True)
Parses a range header into a Range object. If the header is missing or malformed
None is returned. ranges is a list of (start, stop) tuples where the ranges are
non-inclusive.

New in version 0.7.

werkzeug.http.parse_content_range_header(value, on_update=None)
Parses a range header into a ContentRange object or None if parsing is not possi-
ble.

New in version 0.7.

Parameters

• value – a content range header to be parsed.

• on_update – an optional callable that is called every time a
value on the ContentRange object is changed.

Header Utilities

The following utilities operate on HTTP headers well but do not parse them. They are
useful if you’re dealing with conditional responses or if you want to proxy arbitrary
requests but want to remove WSGI-unsupported hop-by-hop headers. Also there is a
function to create HTTP header strings from the parsed data.

werkzeug.http.is_entity_header(header)
Check if a header is an entity header.

New in version 0.5.

Parameters header – the header to test.

109

Returns True if it’s an entity header, False otherwise.

werkzeug.http.is_hop_by_hop_header(header)
Check if a header is an HTTP/1.1 “Hop-by-Hop” header.

New in version 0.5.

Parameters header – the header to test.

Returns True if it’s an HTTP/1.1 “Hop-by-Hop” header, False other-
wise.

werkzeug.http.remove_entity_headers(headers, allowed=(‘expires’, ‘content-
location’))

Remove all entity headers from a list or Headers object. This operation works
in-place. Expires and Content-Location headers are by default not removed. The
reason for this is RFC 2616 section 10.3.5 which specifies some entity headers
that should be sent.

Changed in version 0.5: added allowed parameter.

Parameters

• headers – a list or Headers object.

• allowed – a list of headers that should still be allowed even
though they are entity headers.

werkzeug.http.remove_hop_by_hop_headers(headers)
Remove all HTTP/1.1 “Hop-by-Hop” headers from a list or Headers object. This
operation works in-place.

New in version 0.5.

Parameters headers – a list or Headers object.

werkzeug.http.is_byte_range_valid(start, stop, length)
Checks if a given byte content range is valid for the given length.

New in version 0.7.

werkzeug.http.quote_header_value(value, extra_chars=’‘, allow_token=True)
Quote a header value if necessary.

New in version 0.5.

Parameters

• value – the value to quote.

• extra_chars – a list of extra characters to skip quoting.

• allow_token – if this is enabled token values are returned un-
changed.

werkzeug.http.unquote_header_value(value, is_filename=False)
Unquotes a header value. (Reversal of quote_header_value()). This does not
use the real unquoting but what browsers are actually using for quoting.

110

https://tools.ietf.org/html/rfc2616.html

New in version 0.5.

Parameters value – the header value to unquote.

werkzeug.http.dump_header(iterable, allow_token=True)
Dump an HTTP header again. This is the reversal of parse_list_header(),
parse_set_header() and parse_dict_header(). This also quotes strings that in-
clude an equals sign unless you pass it as dict of key, value pairs.

>>> dump_header({'foo': 'bar baz'})
'foo="bar baz"'
>>> dump_header(('foo', 'bar baz'))
'foo, "bar baz"'

Parameters

• iterable – the iterable or dict of values to quote.

• allow_token – if set to False tokens as values are disallowed.
See quote_header_value() for more details.

Cookies

werkzeug.http.parse_cookie(header, charset=’utf-8’, errors=’replace’, cls=None)
Parse a cookie. Either from a string or WSGI environ.

Per default encoding errors are ignored. If you want a different behavior you can
set errors to 'replace' or 'strict'. In strict mode a HTTPUnicodeError is raised.

Changed in version 0.5: This function now returns a TypeConversionDict instead
of a regular dict. The cls parameter was added.

Parameters

• header – the header to be used to parse the cookie. Alterna-
tively this can be a WSGI environment.

• charset – the charset for the cookie values.

• errors – the error behavior for the charset decoding.

• cls – an optional dict class to use. If this is not specified or
None the default TypeConversionDict is used.

werkzeug.http.dump_cookie(key, value=’‘, max_age=None, expires=None,
path=’/’, domain=None, secure=False, httponly=False,
charset=’utf-8’, sync_expires=True, max_size=4093)

Creates a new Set-Cookie header without the Set-Cookie prefix The parameters
are the same as in the cookie Morsel object in the Python standard library but it
accepts unicode data, too.

On Python 3 the return value of this function will be a unicode string, on Python
2 it will be a native string. In both cases the return value is usually restricted to

111

ascii as the vast majority of values are properly escaped, but that is no guarantee.
If a unicode string is returned it’s tunneled through latin1 as required by PEP
3333.

The return value is not ASCII safe if the key contains unicode characters. This is
technically against the specification but happens in the wild. It’s strongly recom-
mended to not use non-ASCII values for the keys.

Parameters

• max_age – should be a number of seconds, or None (default)
if the cookie should last only as long as the client’s browser
session. Additionally timedelta objects are accepted, too.

• expires – should be a datetime object or unix timestamp.

• path – limits the cookie to a given path, per default it will span
the whole domain.

• domain – Use this if you want to set a cross-domain cookie.
For example, domain=".example.com" will set a cookie that
is readable by the domain www.example.com, foo.example.com
etc. Otherwise, a cookie will only be readable by the domain
that set it.

• secure – The cookie will only be available via HTTPS

• httponly – disallow JavaScript to access the cookie. This is an
extension to the cookie standard and probably not supported
by all browsers.

• charset – the encoding for unicode values.

• sync_expires – automatically set expires if max_age is defined
but expires not.

• max_size – Warn if the final header value exceeds this size. The
default, 4093, should be safely supported by most browsers.
Set to 0 to disable this check.

Conditional Response Helpers

For conditional responses the following functions might be useful:

werkzeug.http.parse_etags(value)
Parse an etag header.

Parameters value – the tag header to parse

Returns an ETags object.

werkzeug.http.quote_etag(etag, weak=False)
Quote an etag.

112

http://browsercookielimits.squawky.net/

Parameters

• etag – the etag to quote.

• weak – set to True to tag it “weak”.

werkzeug.http.unquote_etag(etag)
Unquote a single etag:

>>> unquote_etag('W/"bar"')
('bar', True)
>>> unquote_etag('"bar"')
('bar', False)

Parameters etag – the etag identifier to unquote.

Returns a (etag, weak) tuple.

werkzeug.http.generate_etag(data)
Generate an etag for some data.

werkzeug.http.is_resource_modified(environ, etag=None, data=None,
last_modified=None, ig-
nore_if_range=True)

Convenience method for conditional requests.

Parameters

• environ – the WSGI environment of the request to be checked.

• etag – the etag for the response for comparison.

• data – or alternatively the data of the response to automatically
generate an etag using generate_etag().

• last_modified – an optional date of the last modification.

• ignore_if_range – If False, If-Range header will be taken into
account.

Returns True if the resource was modified, otherwise False.

Constants

werkzeug.http.HTTP_STATUS_CODES
A dict of status code -> default status message pairs. This is used by the wrap-
pers and other places where an integer status code is expanded to a string
throughout Werkzeug.

113

Form Data Parsing

Werkzeug provides the form parsing functions separately from the request object so
that you can access form data from a plain WSGI environment.

The following formats are currently supported by the form data parser:

• application/x-www-form-urlencoded

• multipart/form-data

Nested multipart is not currently supported (Werkzeug 0.9), but it isn’t used by any of
the modern web browsers.

Usage example:

>>> from cStringIO import StringIO
>>> data = '--foo\r\nContent-Disposition: form-data; name="test"\r\n' \
... '\r\nHello World!\r\n--foo--'
>>> environ = {'wsgi.input': StringIO(data), 'CONTENT_LENGTH': str(len(data)),
... 'CONTENT_TYPE': 'multipart/form-data; boundary=foo',
... 'REQUEST_METHOD': 'POST'}
>>> stream, form, files = parse_form_data(environ)
>>> stream.read()
''
>>> form['test']
u'Hello World!'
>>> not files
True

Normally the WSGI environment is provided by the WSGI gateway with the incoming
data as part of it. If you want to generate such fake-WSGI environments for unittesting
you might want to use the create_environ() function or the EnvironBuilder instead.

class werkzeug.formparser.FormDataParser(stream_factory=None,
charset=’utf-8’, errors=’replace’,
max_form_memory_size=None,
max_content_length=None,
cls=None, silent=True)

This class implements parsing of form data for Werkzeug. By itself it can parse
multipart and url encoded form data. It can be subclassed and extended but for
most mimetypes it is a better idea to use the untouched stream and expose it as
separate attributes on a request object.

New in version 0.8.

Parameters

• stream_factory – An optional callable that returns a new read
and writeable file descriptor. This callable works the same as
_get_file_stream().

• charset – The character set for URL and url encoded form data.

114

• errors – The encoding error behavior.

• max_form_memory_size – the maximum number of bytes to be
accepted for in-memory stored form data. If the data ex-
ceeds the value specified an RequestEntityTooLarge exception
is raised.

• max_content_length – If this is provided and the transmitted
data is longer than this value an RequestEntityTooLarge ex-
ception is raised.

• cls – an optional dict class to use. If this is not specified or
None the default MultiDict is used.

• silent – If set to False parsing errors will not be caught.

werkzeug.formparser.parse_form_data(environ, stream_factory=None,
charset=’utf-8’, errors=’replace’,
max_form_memory_size=None,
max_content_length=None, cls=None,
silent=True)

Parse the form data in the environ and return it as tuple in the form (stream,
form, files). You should only call this method if the transport method is POST,
PUT, or PATCH.

If the mimetype of the data transmitted is multipart/form-data the files multidict
will be filled with FileStorage objects. If the mimetype is unknown the input
stream is wrapped and returned as first argument, else the stream is empty.

This is a shortcut for the common usage of FormDataParser.

Have a look at Dealing with Request Data for more details.

New in version 0.5: The max_form_memory_size, max_content_length and cls pa-
rameters were added.

New in version 0.5.1: The optional silent flag was added.

Parameters

• environ – the WSGI environment to be used for parsing.

• stream_factory – An optional callable that returns a new read
and writeable file descriptor. This callable works the same as
_get_file_stream().

• charset – The character set for URL and url encoded form data.

• errors – The encoding error behavior.

• max_form_memory_size – the maximum number of bytes to be
accepted for in-memory stored form data. If the data ex-
ceeds the value specified an RequestEntityTooLarge exception
is raised.

115

• max_content_length – If this is provided and the transmitted
data is longer than this value an RequestEntityTooLarge ex-
ception is raised.

• cls – an optional dict class to use. If this is not specified or
None the default MultiDict is used.

• silent – If set to False parsing errors will not be caught.

Returns A tuple in the form (stream, form, files).

werkzeug.formparser.parse_multipart_headers(iterable)
Parses multipart headers from an iterable that yields lines (including the trailing
newline symbol). The iterable has to be newline terminated.

The iterable will stop at the line where the headers ended so it can be further
consumed.

Parameters iterable – iterable of strings that are newline terminated

116

CHAPTER 15

Data Structures

Werkzeug provides some subclasses of common Python objects to extend them with
additional features. Some of them are used to make them immutable, others are used
to change some semantics to better work with HTTP.

General Purpose

Changed in version 0.6: The general purpose classes are now pickleable in each proto-
col as long as the contained objects are pickleable. This means that the FileMultiDict
won’t be pickleable as soon as it contains a file.

class werkzeug.datastructures.TypeConversionDict
Works like a regular dict but the get() method can perform type conversions.
MultiDict and CombinedMultiDict are subclasses of this class and provide the
same feature.

New in version 0.5.

get(key, default=None, type=None)
Return the default value if the requested data doesn’t exist. If type is pro-
vided and is a callable it should convert the value, return it or raise a
ValueError if that is not possible. In this case the function will return the
default as if the value was not found:

>>> d = TypeConversionDict(foo='42', bar='blub')
>>> d.get('foo', type=int)
42
>>> d.get('bar', -1, type=int)
-1

117

https://docs.python.org/dev/library/exceptions.html#ValueError

Parameters

• key – The key to be looked up.

• default – The default value to be returned if the key can’t be
looked up. If not further specified None is returned.

• type – A callable that is used to cast the value in the
MultiDict. If a ValueError is raised by this callable the de-
fault value is returned.

class werkzeug.datastructures.ImmutableTypeConversionDict
Works like a TypeConversionDict but does not support modifications.

New in version 0.5.

copy()
Return a shallow mutable copy of this object. Keep in mind that the stan-
dard library’s copy() function is a no-op for this class like for any other
python immutable type (eg: tuple).

class werkzeug.datastructures.MultiDict(mapping=None)
A MultiDict is a dictionary subclass customized to deal with multiple values for
the same key which is for example used by the parsing functions in the wrappers.
This is necessary because some HTML form elements pass multiple values for
the same key.

MultiDict implements all standard dictionary methods. Internally, it saves all
values for a key as a list, but the standard dict access methods will only return
the first value for a key. If you want to gain access to the other values, too, you
have to use the list methods as explained below.

Basic Usage:

>>> d = MultiDict([('a', 'b'), ('a', 'c')])
>>> d
MultiDict([('a', 'b'), ('a', 'c')])
>>> d['a']
'b'
>>> d.getlist('a')
['b', 'c']
>>> 'a' in d
True

It behaves like a normal dict thus all dict functions will only return the first value
when multiple values for one key are found.

From Werkzeug 0.3 onwards, the KeyError raised by this class is also a subclass
of the BadRequest HTTP exception and will render a page for a 400 BAD REQUEST
if caught in a catch-all for HTTP exceptions.

118

https://docs.python.org/dev/library/exceptions.html#ValueError
https://docs.python.org/dev/library/stdtypes.html#tuple

A MultiDict can be constructed from an iterable of (key, value) tuples, a dict,
a MultiDict or from Werkzeug 0.2 onwards some keyword parameters.

Parameters mapping – the initial value for the MultiDict. Either a reg-
ular dict, an iterable of (key, value) tuples or None.

add(key, value)
Adds a new value for the key.

New in version 0.6.

Parameters

• key – the key for the value.

• value – the value to add.

clear() → None. Remove all items from D.

copy()
Return a shallow copy of this object.

deepcopy(memo=None)
Return a deep copy of this object.

fromkeys(S[, v]) → New dict with keys from S and values equal to v.
v defaults to None.

get(key, default=None, type=None)
Return the default value if the requested data doesn’t exist. If type is pro-
vided and is a callable it should convert the value, return it or raise a
ValueError if that is not possible. In this case the function will return the
default as if the value was not found:

>>> d = TypeConversionDict(foo='42', bar='blub')
>>> d.get('foo', type=int)
42
>>> d.get('bar', -1, type=int)
-1

Parameters

• key – The key to be looked up.

• default – The default value to be returned if the key can’t be
looked up. If not further specified None is returned.

• type – A callable that is used to cast the value in the
MultiDict. If a ValueError is raised by this callable the de-
fault value is returned.

getlist(key, type=None)
Return the list of items for a given key. If that key is not in the MultiDict, the
return value will be an empty list. Just as get getlist accepts a type parameter.
All items will be converted with the callable defined there.

119

https://docs.python.org/dev/library/exceptions.html#ValueError
https://docs.python.org/dev/library/exceptions.html#ValueError

Parameters

• key – The key to be looked up.

• type – A callable that is used to cast the value in the
MultiDict. If a ValueError is raised by this callable the value
will be removed from the list.

Returns a list of all the values for the key.

has_key(k) → True if D has a key k, else False

items(*a, **kw)
Like iteritems(), but returns a list.

iteritems(multi=False)
Return an iterator of (key, value) pairs.

Parameters multi – If set to True the iterator returned will have a
pair for each value of each key. Otherwise it will only contain
pairs for the first value of each key.

iterlists()
Return a list of (key, values) pairs, where values is the list of all values
associated with the key.

iterlistvalues()
Return an iterator of all values associated with a key. Zipping keys() and
this is the same as calling lists():

>>> d = MultiDict({"foo": [1, 2, 3]})
>>> zip(d.keys(), d.listvalues()) == d.lists()
True

itervalues()
Returns an iterator of the first value on every key’s value list.

keys(*a, **kw)
Like iterkeys(), but returns a list.

lists(*a, **kw)
Like iterlists(), but returns a list.

listvalues(*a, **kw)
Like iterlistvalues(), but returns a list.

pop(key, default=no value)
Pop the first item for a list on the dict. Afterwards the key is removed from
the dict, so additional values are discarded:

>>> d = MultiDict({"foo": [1, 2, 3]})
>>> d.pop("foo")
1
>>> "foo" in d
False

120

https://docs.python.org/dev/library/exceptions.html#ValueError
https://docs.python.org/dev/library/stdtypes.html#list

Parameters

• key – the key to pop.

• default – if provided the value to return if the key was not in
the dictionary.

popitem()
Pop an item from the dict.

popitemlist()
Pop a (key, list) tuple from the dict.

poplist(key)
Pop the list for a key from the dict. If the key is not in the dict an empty list
is returned.

Changed in version 0.5: If the key does no longer exist a list is returned
instead of raising an error.

setdefault(key, default=None)
Returns the value for the key if it is in the dict, otherwise it returns default
and sets that value for key.

Parameters

• key – The key to be looked up.

• default – The default value to be returned if the key is not in
the dict. If not further specified it’s None.

setlist(key, new_list)
Remove the old values for a key and add new ones. Note that the list you
pass the values in will be shallow-copied before it is inserted in the dictio-
nary.

>>> d = MultiDict()
>>> d.setlist('foo', ['1', '2'])
>>> d['foo']
'1'
>>> d.getlist('foo')
['1', '2']

Parameters

• key – The key for which the values are set.

• new_list – An iterable with the new values for the key. Old
values are removed first.

setlistdefault(key, default_list=None)
Like setdefault but sets multiple values. The list returned is not a copy, but
the list that is actually used internally. This means that you can put new
values into the dict by appending items to the list:

121

>>> d = MultiDict({"foo": 1})
>>> d.setlistdefault("foo").extend([2, 3])
>>> d.getlist("foo")
[1, 2, 3]

Parameters

• key – The key to be looked up.

• default – An iterable of default values. It is either copied (in
case it was a list) or converted into a list before returned.

Returns a list

to_dict(flat=True)
Return the contents as regular dict. If flat is True the returned dict will only
have the first item present, if flat is False all values will be returned as lists.

Parameters flat – If set to False the dict returned will have lists
with all the values in it. Otherwise it will only contain the first
value for each key.

Returns a dict

update(other_dict)
update() extends rather than replaces existing key lists:

>>> a = MultiDict({'x': 1})
>>> b = MultiDict({'x': 2, 'y': 3})
>>> a.update(b)
>>> a
MultiDict([('y', 3), ('x', 1), ('x', 2)])

If the value list for a key in other_dict is empty, no new values will be
added to the dict and the key will not be created:

>>> x = {'empty_list': []}
>>> y = MultiDict()
>>> y.update(x)
>>> y
MultiDict([])

values(*a, **kw)
Like itervalues(), but returns a list.

viewitems(*a, **kw)
“”“viewitems() object providing a view on items”“”

viewkeys(*a, **kw)
“”“viewkeys() object providing a view on keys”“”

viewlists(*a, **kw)
“”“viewlists() object providing a view on lists”“”

122

https://docs.python.org/dev/library/stdtypes.html#list
https://docs.python.org/dev/library/stdtypes.html#dict

viewlistvalues(*a, **kw)
“”“viewlistvalues() object providing a view on listvalues”“”

viewvalues(*a, **kw)
“”“viewvalues() object providing a view on values”“”

class werkzeug.datastructures.OrderedMultiDict(mapping=None)
Works like a regular MultiDict but preserves the order of the fields. To convert
the ordered multi dict into a list you can use the items() method and pass it
multi=True.

In general an OrderedMultiDict is an order of magnitude slower than a
MultiDict.

note

Due to a limitation in Python you cannot convert an ordered multi dict into a
regular dict by using dict(multidict). Instead you have to use the to_dict()
method, otherwise the internal bucket objects are exposed.

class werkzeug.datastructures.ImmutableMultiDict(mapping=None)
An immutable MultiDict.

New in version 0.5.

copy()
Return a shallow mutable copy of this object. Keep in mind that the stan-
dard library’s copy() function is a no-op for this class like for any other
python immutable type (eg: tuple).

class werkzeug.datastructures.ImmutableOrderedMultiDict(mapping=None)
An immutable OrderedMultiDict.

New in version 0.6.

copy()
Return a shallow mutable copy of this object. Keep in mind that the stan-
dard library’s copy() function is a no-op for this class like for any other
python immutable type (eg: tuple).

class werkzeug.datastructures.CombinedMultiDict(dicts=None)
A read only MultiDict that you can pass multiple MultiDict instances as se-
quence and it will combine the return values of all wrapped dicts:

>>> from werkzeug.datastructures import CombinedMultiDict, MultiDict
>>> post = MultiDict([('foo', 'bar')])
>>> get = MultiDict([('blub', 'blah')])
>>> combined = CombinedMultiDict([get, post])
>>> combined['foo']
'bar'
>>> combined['blub']
'blah'

123

https://docs.python.org/dev/library/stdtypes.html#tuple
https://docs.python.org/dev/library/stdtypes.html#tuple

This works for all read operations and will raise a TypeError for methods that
usually change data which isn’t possible.

From Werkzeug 0.3 onwards, the KeyError raised by this class is also a subclass
of the BadRequest HTTP exception and will render a page for a 400 BAD REQUEST
if caught in a catch-all for HTTP exceptions.

class werkzeug.datastructures.ImmutableDict
An immutable dict.

New in version 0.5.

copy()
Return a shallow mutable copy of this object. Keep in mind that the stan-
dard library’s copy() function is a no-op for this class like for any other
python immutable type (eg: tuple).

class werkzeug.datastructures.ImmutableList
An immutable list.

New in version 0.5.

Private

class werkzeug.datastructures.FileMultiDict(mapping=None)
A special MultiDict that has convenience methods to add files to it. This is used
for EnvironBuilder and generally useful for unittesting.

New in version 0.5.

add_file(name, file, filename=None, content_type=None)
Adds a new file to the dict. file can be a file name or a file-like or a
FileStorage object.

Parameters

• name – the name of the field.

• file – a filename or file-like object

• filename – an optional filename

• content_type – an optional content type

HTTP Related

class werkzeug.datastructures.Headers([defaults])
An object that stores some headers. It has a dict-like interface but is ordered and
can store the same keys multiple times.

This data structure is useful if you want a nicer way to handle WSGI headers
which are stored as tuples in a list.

124

https://docs.python.org/dev/library/stdtypes.html#dict
https://docs.python.org/dev/library/stdtypes.html#tuple
https://docs.python.org/dev/library/stdtypes.html#list

From Werkzeug 0.3 onwards, the KeyError raised by this class is also a subclass
of the BadRequest HTTP exception and will render a page for a 400 BAD REQUEST
if caught in a catch-all for HTTP exceptions.

Headers is mostly compatible with the Python wsgiref.headers.Headers
class, with the exception of __getitem__. wsgiref will return None for
headers['missing'], whereas Headers will raise a KeyError.

To create a new Headers object pass it a list or dict of headers which are used as
default values. This does not reuse the list passed to the constructor for internal
usage.

Parameters defaults – The list of default values for the Headers.

Changed in version 0.9: This data structure now stores unicode values similar
to how the multi dicts do it. The main difference is that bytes can be set as well
which will automatically be latin1 decoded.

Changed in version 0.9: The linked() function was removed without replace-
ment as it was an API that does not support the changes to the encoding model.

add(_key, _value, **kw)
Add a new header tuple to the list.

Keyword arguments can specify additional parameters for the header
value, with underscores converted to dashes:

>>> d = Headers()
>>> d.add('Content-Type', 'text/plain')
>>> d.add('Content-Disposition', 'attachment', filename='foo.png')

The keyword argument dumping uses dump_options_header() behind the
scenes.

New in version 0.4.1: keyword arguments were added for wsgiref compat-
ibility.

add_header(_key, _value, **_kw)
Add a new header tuple to the list.

An alias for add() for compatibility with the wsgiref add_header() method.

clear()
Clears all headers.

extend(iterable)
Extend the headers with a dict or an iterable yielding keys and values.

get(key, default=None, type=None, as_bytes=False)
Return the default value if the requested data doesn’t exist. If type is pro-
vided and is a callable it should convert the value, return it or raise a
ValueError if that is not possible. In this case the function will return the
default as if the value was not found:

125

https://docs.python.org/dev/library/exceptions.html#KeyError
https://docs.python.org/dev/library/wsgiref.html#wsgiref.headers.Headers
https://docs.python.org/dev/library/wsgiref.html#module-wsgiref
https://docs.python.org/dev/library/exceptions.html#KeyError
https://docs.python.org/dev/library/wsgiref.html#module-wsgiref
https://docs.python.org/dev/library/wsgiref.html#module-wsgiref
https://docs.python.org/dev/library/wsgiref.html#wsgiref.headers.Headers.add_header
https://docs.python.org/dev/library/exceptions.html#ValueError

>>> d = Headers([('Content-Length', '42')])
>>> d.get('Content-Length', type=int)
42

If a headers object is bound you must not add unicode strings because no
encoding takes place.

New in version 0.9: Added support for as_bytes.

Parameters

• key – The key to be looked up.

• default – The default value to be returned if the key can’t be
looked up. If not further specified None is returned.

• type – A callable that is used to cast the value in the Headers.
If a ValueError is raised by this callable the default value is
returned.

• as_bytes – return bytes instead of unicode strings.

get_all(name)
Return a list of all the values for the named field.

This method is compatible with the wsgiref get_all() method.

getlist(key, type=None, as_bytes=False)
Return the list of items for a given key. If that key is not in the Headers, the
return value will be an empty list. Just as get() getlist() accepts a type
parameter. All items will be converted with the callable defined there.

New in version 0.9: Added support for as_bytes.

Parameters

• key – The key to be looked up.

• type – A callable that is used to cast the value in the Headers.
If a ValueError is raised by this callable the value will be re-
moved from the list.

• as_bytes – return bytes instead of unicode strings.

Returns a list of all the values for the key.

has_key(key)
Check if a key is present.

items(*a, **kw)
Like iteritems(), but returns a list.

keys(*a, **kw)
Like iterkeys(), but returns a list.

pop(key=None, default=no value)
Removes and returns a key or index.

126

https://docs.python.org/dev/library/exceptions.html#ValueError
https://docs.python.org/dev/library/wsgiref.html#module-wsgiref
https://docs.python.org/dev/library/wsgiref.html#wsgiref.headers.Headers.get_all
https://docs.python.org/dev/library/exceptions.html#ValueError
https://docs.python.org/dev/library/stdtypes.html#list

Parameters key – The key to be popped. If this is an integer the
item at that position is removed, if it’s a string the value for that
key is. If the key is omitted or None the last item is removed.

Returns an item.

popitem()
Removes a key or index and returns a (key, value) item.

remove(key)
Remove a key.

Parameters key – The key to be removed.

set(_key, _value, **kw)
Remove all header tuples for key and add a new one. The newly added key
either appears at the end of the list if there was no entry or replaces the first
one.

Keyword arguments can specify additional parameters for the header
value, with underscores converted to dashes. See add() for more informa-
tion.

Changed in version 0.6.1: set() now accepts the same arguments as add().

Parameters

• key – The key to be inserted.

• value – The value to be inserted.

setdefault(key, value)
Returns the value for the key if it is in the dict, otherwise it returns default
and sets that value for key.

Parameters

• key – The key to be looked up.

• default – The default value to be returned if the key is not in
the dict. If not further specified it’s None.

to_list(charset=’iso-8859-1’)
Convert the headers into a list suitable for WSGI.

to_wsgi_list()
Convert the headers into a list suitable for WSGI.

The values are byte strings in Python 2 converted to latin1 and unicode
strings in Python 3 for the WSGI server to encode.

Returns list

values(*a, **kw)
Like itervalues(), but returns a list.

viewitems(*a, **kw)
“”“viewitems() object providing a view on items”“”

127

viewkeys(*a, **kw)
“”“viewkeys() object providing a view on keys”“”

viewvalues(*a, **kw)
“”“viewvalues() object providing a view on values”“”

class werkzeug.datastructures.EnvironHeaders(environ)
Read only version of the headers from a WSGI environment. This provides the
same interface as Headers and is constructed from a WSGI environment.

From Werkzeug 0.3 onwards, the KeyError raised by this class is also a subclass
of the BadRequest HTTP exception and will render a page for a 400 BAD REQUEST
if caught in a catch-all for HTTP exceptions.

class werkzeug.datastructures.HeaderSet(headers=None, on_update=None)
Similar to the ETags class this implements a set-like structure. Unlike ETags this
is case insensitive and used for vary, allow, and content-language headers.

If not constructed using the parse_set_header() function the instantiation works
like this:

>>> hs = HeaderSet(['foo', 'bar', 'baz'])
>>> hs
HeaderSet(['foo', 'bar', 'baz'])

add(header)
Add a new header to the set.

as_set(preserve_casing=False)
Return the set as real python set type. When calling this, all the items are
converted to lowercase and the ordering is lost.

Parameters preserve_casing – if set to True the items in the set re-
turned will have the original case like in the HeaderSet, other-
wise they will be lowercase.

clear()
Clear the set.

discard(header)
Like remove() but ignores errors.

Parameters header – the header to be discarded.

find(header)
Return the index of the header in the set or return -1 if not found.

Parameters header – the header to be looked up.

index(header)
Return the index of the header in the set or raise an IndexError.

Parameters header – the header to be looked up.

128

https://docs.python.org/dev/library/exceptions.html#IndexError

remove(header)
Remove a header from the set. This raises an KeyError if the header is not
in the set.

Changed in version 0.5: In older versions a IndexError was raised instead
of a KeyError if the object was missing.

Parameters header – the header to be removed.

to_header()
Convert the header set into an HTTP header string.

update(iterable)
Add all the headers from the iterable to the set.

Parameters iterable – updates the set with the items from the it-
erable.

class werkzeug.datastructures.Accept(values=())
An Accept object is just a list subclass for lists of (value, quality) tuples. It is
automatically sorted by quality.

All Accept objects work similar to a list but provide extra functionality for work-
ing with the data. Containment checks are normalized to the rules of that header:

>>> a = CharsetAccept([('ISO-8859-1', 1), ('utf-8', 0.7)])
>>> a.best
'ISO-8859-1'
>>> 'iso-8859-1' in a
True
>>> 'UTF8' in a
True
>>> 'utf7' in a
False

To get the quality for an item you can use normal item lookup:

>>> print a['utf-8']
0.7
>>> a['utf7']
0

Changed in version 0.5: Accept objects are forced immutable now.

best
The best match as value.

best_match(matches, default=None)
Returns the best match from a list of possible matches based on the quality
of the client. If two items have the same quality, the one is returned that
comes first.

Parameters

• matches – a list of matches to check for

129

https://docs.python.org/dev/library/exceptions.html#KeyError
https://docs.python.org/dev/library/exceptions.html#IndexError
https://docs.python.org/dev/library/exceptions.html#KeyError

• default – the value that is returned if none match

find(key)
Get the position of an entry or return -1.

Parameters key – The key to be looked up.

index(key)
Get the position of an entry or raise ValueError.

Parameters key – The key to be looked up.

Changed in version 0.5: This used to raise IndexError, which was inconsis-
tent with the list API.

itervalues()
Iterate over all values.

quality(key)
Returns the quality of the key.

New in version 0.6: In previous versions you had to use the item-lookup
syntax (eg: obj[key] instead of obj.quality(key))

to_header()
Convert the header set into an HTTP header string.

values(*a, **kw)
Like itervalues(), but returns a list.

viewvalues(*a, **kw)
“”“viewvalues() object providing a view on values”“”

class werkzeug.datastructures.MIMEAccept(values=())
Like Accept but with special methods and behavior for mimetypes.

accept_html
True if this object accepts HTML.

accept_json
True if this object accepts JSON.

accept_xhtml
True if this object accepts XHTML.

class werkzeug.datastructures.CharsetAccept(values=())
Like Accept but with normalization for charsets.

class werkzeug.datastructures.LanguageAccept(values=())
Like Accept but with normalization for languages.

class werkzeug.datastructures.RequestCacheControl(values=(),
on_update=None)

A cache control for requests. This is immutable and gives access to all the
request-relevant cache control headers.

130

https://docs.python.org/dev/library/exceptions.html#ValueError
https://docs.python.org/dev/library/exceptions.html#IndexError

To get a header of the RequestCacheControl object again you can convert the
object into a string or call the to_header() method. If you plan to subclass it and
add your own items have a look at the sourcecode for that class.

New in version 0.5: In previous versions a CacheControl class existed that was
used both for request and response.

no_cache
accessor for ‘no-cache’

no_store
accessor for ‘no-store’

max_age
accessor for ‘max-age’

no_transform
accessor for ‘no-transform’

max_stale
accessor for ‘max-stale’

min_fresh
accessor for ‘min-fresh’

no_transform
accessor for ‘no-transform’

only_if_cached
accessor for ‘only-if-cached’

class werkzeug.datastructures.ResponseCacheControl(values=(),
on_update=None)

A cache control for responses. Unlike RequestCacheControl this is mutable and
gives access to response-relevant cache control headers.

To get a header of the ResponseCacheControl object again you can convert the
object into a string or call the to_header() method. If you plan to subclass it and
add your own items have a look at the sourcecode for that class.

New in version 0.5: In previous versions a CacheControl class existed that was
used both for request and response.

no_cache
accessor for ‘no-cache’

no_store
accessor for ‘no-store’

max_age
accessor for ‘max-age’

no_transform
accessor for ‘no-transform’

must_revalidate
accessor for ‘must-revalidate’

131

private
accessor for ‘private’

proxy_revalidate
accessor for ‘proxy-revalidate’

public
accessor for ‘public’

s_maxage
accessor for ‘s-maxage’

class werkzeug.datastructures.ETags(strong_etags=None, weak_etags=None,
star_tag=False)

A set that can be used to check if one etag is present in a collection of etags.

as_set(include_weak=False)
Convert the ETags object into a python set. Per default all the weak etags
are not part of this set.

contains(etag)
Check if an etag is part of the set ignoring weak tags. It is also possible to
use the in operator.

contains_raw(etag)
When passed a quoted tag it will check if this tag is part of the set. If the tag
is weak it is checked against weak and strong tags, otherwise strong only.

contains_weak(etag)
Check if an etag is part of the set including weak and strong tags.

is_weak(etag)
Check if an etag is weak.

to_header()
Convert the etags set into a HTTP header string.

class werkzeug.datastructures.Authorization(auth_type, data=None)
Represents an Authorization header sent by the client. You should not
create this kind of object yourself but use it when it’s returned by the
parse_authorization_header function.

This object is a dict subclass and can be altered by setting dict items but it should
be considered immutable as it’s returned by the client and not meant for modifi-
cations.

Changed in version 0.5: This object became immutable.

cnonce
If the server sent a qop-header in the WWW-Authenticate header, the client
has to provide this value for HTTP digest auth. See the RFC for more details.

nc
The nonce count value transmitted by clients if a qop-header is also trans-
mitted. HTTP digest auth only.

132

nonce
The nonce the server sent for digest auth, sent back by the client. A nonce
should be unique for every 401 response for HTTP digest auth.

opaque
The opaque header from the server returned unchanged by the client. It is
recommended that this string be base64 or hexadecimal data. Digest auth
only.

password
When the authentication type is basic this is the password transmitted by
the client, else None.

qop
Indicates what “quality of protection” the client has applied to the message
for HTTP digest auth. Note that this is a single token, not a quoted list of
alternatives as in WWW-Authenticate.

realm
This is the server realm sent back for HTTP digest auth.

response
A string of 32 hex digits computed as defined in RFC 2617, which proves
that the user knows a password. Digest auth only.

uri
The URI from Request-URI of the Request-Line; duplicated because proxies
are allowed to change the Request-Line in transit. HTTP digest auth only.

username
The username transmitted. This is set for both basic and digest auth all the
time.

class werkzeug.datastructures.WWWAuthenticate(auth_type=None, values=None,
on_update=None)

Provides simple access to WWW-Authenticate headers.

algorithm
A string indicating a pair of algorithms used to produce the digest and a
checksum. If this is not present it is assumed to be “MD5”. If the algo-
rithm is not understood, the challenge should be ignored (and a different
one used, if there is more than one).

static auth_property(name, doc=None)
A static helper function for subclasses to add extra authentication system
properties onto a class:

class FooAuthenticate(WWWAuthenticate):
special_realm = auth_property('special_realm')

For more information have a look at the sourcecode to see how the regular
properties (realm etc.) are implemented.

133

domain
A list of URIs that define the protection space. If a URI is an absolute path,
it is relative to the canonical root URL of the server being accessed.

nonce
A server-specified data string which should be uniquely generated each
time a 401 response is made. It is recommended that this string be base64
or hexadecimal data.

opaque
A string of data, specified by the server, which should be returned by the
client unchanged in the Authorization header of subsequent requests with
URIs in the same protection space. It is recommended that this string be
base64 or hexadecimal data.

qop
A set of quality-of-privacy directives such as auth and auth-int.

realm
A string to be displayed to users so they know which username and pass-
word to use. This string should contain at least the name of the host per-
forming the authentication and might additionally indicate the collection of
users who might have access.

set_basic(realm=’authentication required’)
Clear the auth info and enable basic auth.

set_digest(realm, nonce, qop=(‘auth’,), opaque=None, algorithm=None,
stale=False)

Clear the auth info and enable digest auth.

stale
A flag, indicating that the previous request from the client was rejected be-
cause the nonce value was stale.

to_header()
Convert the stored values into a WWW-Authenticate header.

type
The type of the auth mechanism. HTTP currently specifies Basic and Digest.

class werkzeug.datastructures.IfRange(etag=None, date=None)
Very simple object that represents the If-Range header in parsed form. It will
either have neither a etag or date or one of either but never both.

New in version 0.7.

date = None
The date in parsed format or None.

etag = None
The etag parsed and unquoted. Ranges always operate on strong etags so
the weakness information is not necessary.

134

to_header()
Converts the object back into an HTTP header.

class werkzeug.datastructures.Range(units, ranges)
Represents a range header. All the methods are only supporting bytes as unit.
It does store multiple ranges but range_for_length() will only work if only one
range is provided.

New in version 0.7.

make_content_range(length)
Creates a ContentRange object from the current range and given content
length.

range_for_length(length)
If the range is for bytes, the length is not None and there is exactly one range
and it is satisfiable it returns a (start, stop) tuple, otherwise None.

ranges = None
A list of (begin, end) tuples for the range header provided. The ranges are
non-inclusive.

to_content_range_header(length)
Converts the object into Content-Range HTTP header, based on given length

to_header()
Converts the object back into an HTTP header.

units = None
The units of this range. Usually “bytes”.

class werkzeug.datastructures.ContentRange(units, start, stop, length=None,
on_update=None)

Represents the content range header.

New in version 0.7.

length
The length of the range or None.

set(start, stop, length=None, units=’bytes’)
Simple method to update the ranges.

start
The start point of the range or None.

stop
The stop point of the range (non-inclusive) or None. Can only be None if also
start is None.

units
The units to use, usually “bytes”

unset()
Sets the units to None which indicates that the header should no longer be
used.

135

Others

class werkzeug.datastructures.FileStorage(stream=None, filename=None,
name=None, content_type=None,
content_length=None, head-
ers=None)

The FileStorage class is a thin wrapper over incoming files. It is used by the re-
quest object to represent uploaded files. All the attributes of the wrapper stream
are proxied by the file storage so it’s possible to do storage.read() instead of the
long form storage.stream.read().

stream
The input stream for the uploaded file. This usually points to an open tem-
porary file.

filename
The filename of the file on the client.

name
The name of the form field.

headers
The multipart headers as Headers object. This usually contains irrelevant in-
formation but in combination with custom multipart requests the raw head-
ers might be interesting.

New in version 0.6.

close()
Close the underlying file if possible.

content_length
The content-length sent in the header. Usually not available

content_type
The content-type sent in the header. Usually not available

mimetype
Like content_type, but without parameters (eg, without charset, type etc.)
and always lowercase. For example if the content type is text/HTML;
charset=utf-8 the mimetype would be 'text/html'.

New in version 0.7.

mimetype_params
The mimetype parameters as dict. For example if the content type is text/
html; charset=utf-8 the params would be {'charset': 'utf-8'}.

New in version 0.7.

save(dst, buffer_size=16384)
Save the file to a destination path or file object. If the destination is a file ob-
ject you have to close it yourself after the call. The buffer size is the number
of bytes held in memory during the copy process. It defaults to 16KB.

136

For secure file saving also have a look at secure_filename().

Parameters

• dst – a filename or open file object the uploaded file is saved
to.

• buffer_size – the size of the buffer. This works the same as
the length parameter of shutil.copyfileobj().

137

https://docs.python.org/dev/library/shutil.html#shutil.copyfileobj

138

CHAPTER 16

Utilities

Various utility functions shipped with Werkzeug.

HTML Helpers

class werkzeug.utils.HTMLBuilder(dialect)
Helper object for HTML generation.

Per default there are two instances of that class. The html one, and the xhtml
one for those two dialects. The class uses keyword parameters and positional
parameters to generate small snippets of HTML.

Keyword parameters are converted to XML/SGML attributes, positional argu-
ments are used as children. Because Python accepts positional arguments before
keyword arguments it’s a good idea to use a list with the star-syntax for some
children:

>>> html.p(class_='foo', *[html.a('foo', href='foo.html'), ' ',
... html.a('bar', href='bar.html')])
u'<p class="foo">foo bar</p>'

This class works around some browser limitations and can not be used for arbi-
trary SGML/XML generation. For that purpose lxml and similar libraries exist.

Calling the builder escapes the string passed:

>>> html.p(html("<foo>"))
u'<p><foo></p>'

139

werkzeug.utils.escape(s, quote=None)
Replace special characters “&”, “<”, “>” and (”) to HTML-safe sequences.

There is a special handling for None which escapes to an empty string.

Changed in version 0.9: quote is now implicitly on.

Parameters

• s – the string to escape.

• quote – ignored.

werkzeug.utils.unescape(s)
The reverse function of escape. This unescapes all the HTML entities, not only
the XML entities inserted by escape.

Parameters s – the string to unescape.

General Helpers

class werkzeug.utils.cached_property(func, name=None, doc=None)
A decorator that converts a function into a lazy property. The function wrapped
is called the first time to retrieve the result and then that calculated result is used
the next time you access the value:

class Foo(object):

@cached_property
def foo(self):

calculate something important here
return 42

The class has to have a __dict__ in order for this property to work.

class werkzeug.utils.environ_property(name, default=None, load_func=None,
dump_func=None, read_only=None,
doc=None)

Maps request attributes to environment variables. This works not only for the
Werzeug request object, but also any other class with an environ attribute:

>>> class Test(object):
... environ = {'key': 'value'}
... test = environ_property('key')
>>> var = Test()
>>> var.test
'value'

If you pass it a second value it’s used as default if the key does not exist, the third
one can be a converter that takes a value and converts it. If it raises ValueError
or TypeError the default value is used. If no default value is provided None is
used.

140

https://docs.python.org/dev/library/exceptions.html#ValueError
https://docs.python.org/dev/library/exceptions.html#TypeError

Per default the property is read only. You have to explicitly enable it by passing
read_only=False to the constructor.

class werkzeug.utils.header_property(name, default=None, load_func=None,
dump_func=None, read_only=None,
doc=None)

Like environ_property but for headers.

werkzeug.utils.parse_cookie(header, charset=’utf-8’, errors=’replace’, cls=None)
Parse a cookie. Either from a string or WSGI environ.

Per default encoding errors are ignored. If you want a different behavior you can
set errors to 'replace' or 'strict'. In strict mode a HTTPUnicodeError is raised.

Changed in version 0.5: This function now returns a TypeConversionDict instead
of a regular dict. The cls parameter was added.

Parameters

• header – the header to be used to parse the cookie. Alterna-
tively this can be a WSGI environment.

• charset – the charset for the cookie values.

• errors – the error behavior for the charset decoding.

• cls – an optional dict class to use. If this is not specified or
None the default TypeConversionDict is used.

werkzeug.utils.dump_cookie(key, value=’‘, max_age=None, expires=None,
path=’/’, domain=None, secure=False,
httponly=False, charset=’utf-8’, sync_expires=True,
max_size=4093)

Creates a new Set-Cookie header without the Set-Cookie prefix The parameters
are the same as in the cookie Morsel object in the Python standard library but it
accepts unicode data, too.

On Python 3 the return value of this function will be a unicode string, on Python
2 it will be a native string. In both cases the return value is usually restricted to
ascii as the vast majority of values are properly escaped, but that is no guarantee.
If a unicode string is returned it’s tunneled through latin1 as required by PEP
3333.

The return value is not ASCII safe if the key contains unicode characters. This is
technically against the specification but happens in the wild. It’s strongly recom-
mended to not use non-ASCII values for the keys.

Parameters

• max_age – should be a number of seconds, or None (default)
if the cookie should last only as long as the client’s browser
session. Additionally timedelta objects are accepted, too.

• expires – should be a datetime object or unix timestamp.

141

• path – limits the cookie to a given path, per default it will span
the whole domain.

• domain – Use this if you want to set a cross-domain cookie.
For example, domain=".example.com" will set a cookie that
is readable by the domain www.example.com, foo.example.com
etc. Otherwise, a cookie will only be readable by the domain
that set it.

• secure – The cookie will only be available via HTTPS

• httponly – disallow JavaScript to access the cookie. This is an
extension to the cookie standard and probably not supported
by all browsers.

• charset – the encoding for unicode values.

• sync_expires – automatically set expires if max_age is defined
but expires not.

• max_size – Warn if the final header value exceeds this size. The
default, 4093, should be safely supported by most browsers.
Set to 0 to disable this check.

werkzeug.utils.redirect(location, code=302, Response=None)
Returns a response object (a WSGI application) that, if called, redirects the client
to the target location. Supported codes are 301, 302, 303, 305, and 307. 300 is not
supported because it’s not a real redirect and 304 because it’s the answer for a
request with a request with defined If-Modified-Since headers.

New in version 0.6: The location can now be a unicode string that is encoded
using the iri_to_uri() function.

New in version 0.10: The class used for the Response object can now be passed
in.

Parameters

• location – the location the response should redirect to.

• code – the redirect status code. defaults to 302.

• Response (class) – a Response class to use when instantiating
a response. The default is werkzeug.wrappers.Response if un-
specified.

werkzeug.utils.append_slash_redirect(environ, code=301)
Redirects to the same URL but with a slash appended. The behavior of this
function is undefined if the path ends with a slash already.

Parameters

• environ – the WSGI environment for the request that triggers
the redirect.

• code – the status code for the redirect.

142

http://browsercookielimits.squawky.net/

werkzeug.utils.import_string(import_name, silent=False)
Imports an object based on a string. This is useful if you want to use import
paths as endpoints or something similar. An import path can be specified either
in dotted notation (xml.sax.saxutils.escape) or with a colon as object delimiter
(xml.sax.saxutils:escape).

If silent is True the return value will be None if the import fails.

Parameters

• import_name – the dotted name for the object to import.

• silent – if set to True import errors are ignored and None is
returned instead.

Returns imported object

werkzeug.utils.find_modules(import_path, include_packages=False, recur-
sive=False)

Finds all the modules below a package. This can be useful to automatically im-
port all views / controllers so that their metaclasses / function decorators have
a chance to register themselves on the application.

Packages are not returned unless include_packages is True. This can also recur-
sively list modules but in that case it will import all the packages to get the cor-
rect load path of that module.

Parameters

• import_name – the dotted name for the package to find child
modules.

• include_packages – set to True if packages should be returned,
too.

• recursive – set to True if recursion should happen.

Returns generator

werkzeug.utils.validate_arguments(func, args, kwargs, drop_extra=True)
Checks if the function accepts the arguments and keyword arguments. Returns
a new (args, kwargs) tuple that can safely be passed to the function without
causing a TypeError because the function signature is incompatible. If drop_extra
is set to True (which is the default) any extra positional or keyword arguments
are dropped automatically.

The exception raised provides three attributes:

missing A set of argument names that the function expected but where missing.

extra A dict of keyword arguments that the function can not handle but where
provided.

extra_positional A list of values that where given by positional argument but
the function cannot accept.

143

This can be useful for decorators that forward user submitted data to a view
function:

from werkzeug.utils import ArgumentValidationError, validate_arguments

def sanitize(f):
def proxy(request):

data = request.values.to_dict()
try:

args, kwargs = validate_arguments(f, (request,), data)
except ArgumentValidationError:

raise BadRequest('The browser failed to transmit all '
'the data expected.')

return f(*args, **kwargs)
return proxy

Parameters

• func – the function the validation is performed against.

• args – a tuple of positional arguments.

• kwargs – a dict of keyword arguments.

• drop_extra – set to False if you don’t want extra arguments to
be silently dropped.

Returns tuple in the form (args, kwargs).

werkzeug.utils.secure_filename(filename)
Pass it a filename and it will return a secure version of it. This filename can
then safely be stored on a regular file system and passed to os.path.join(). The
filename returned is an ASCII only string for maximum portability.

On windows systems the function also makes sure that the file is not named after
one of the special device files.

>>> secure_filename("My cool movie.mov")
'My_cool_movie.mov'
>>> secure_filename("../../../etc/passwd")
'etc_passwd'
>>> secure_filename(u'i contain cool \xfcml\xe4uts.txt')
'i_contain_cool_umlauts.txt'

The function might return an empty filename. It’s your responsibility to ensure
that the filename is unique and that you generate random filename if the function
returned an empty one.

New in version 0.5.

Parameters filename – the filename to secure

werkzeug.utils.bind_arguments(func, args, kwargs)
Bind the arguments provided into a dict. When passed a function, a tuple of

144

https://docs.python.org/dev/library/os.path.html#os.path.join

arguments and a dict of keyword arguments bind_arguments returns a dict of
names as the function would see it. This can be useful to implement a cache
decorator that uses the function arguments to build the cache key based on the
values of the arguments.

Parameters

• func – the function the arguments should be bound for.

• args – tuple of positional arguments.

• kwargs – a dict of keyword arguments.

Returns a dict of bound keyword arguments.

URL Helpers

Please refer to URL Helpers.

UserAgent Parsing

class werkzeug.useragents.UserAgent(environ_or_string)
Represents a user agent. Pass it a WSGI environment or a user agent string and
you can inspect some of the details from the user agent string via the attributes.
The following attributes exist:

string
the raw user agent string

platform
the browser platform. The following platforms are currently recognized:

•aix

•amiga

•android

•bsd

•chromeos

•hpux

•iphone

•ipad

•irix

•linux

•macos

145

https://docs.python.org/dev/library/stdtypes.html#dict

•sco

•solaris

•wii

•windows

browser
the name of the browser. The following browsers are currently recognized:

•aol *

•ask *

•camino

•chrome

•firefox

•galeon

•google *

•kmeleon

•konqueror

•links

•lynx

•msie

•msn

•netscape

•opera

•safari

•seamonkey

•webkit

•yahoo *

(Browsers maked with a star (*) are crawlers.)

version
the version of the browser

language
the language of the browser

146

Security Helpers

New in version 0.6.1.

werkzeug.security.generate_password_hash(password, method=’pbkdf2:sha256’,
salt_length=8)

Hash a password with the given method and salt with a string of the given
length. The format of the string returned includes the method that was used
so that check_password_hash() can check the hash.

The format for the hashed string looks like this:

method$salt$hash

This method can not generate unsalted passwords but it is possible to set param
method=’plain’ in order to enforce plaintext passwords. If a salt is used, hmac is
used internally to salt the password.

If PBKDF2 is wanted it can be enabled by setting the method to
pbkdf2:method:iterations where iterations is optional:

pbkdf2:sha256:80000$salt$hash
pbkdf2:sha256$salt$hash

Parameters

• password – the password to hash.

• method – the hash method to use (one that hash-
lib supports). Can optionally be in the format
pbkdf2:<method>[:iterations] to enable PBKDF2.

• salt_length – the length of the salt in letters.

werkzeug.security.check_password_hash(pwhash, password)
check a password against a given salted and hashed password value. In order to
support unsalted legacy passwords this method supports plain text passwords,
md5 and sha1 hashes (both salted and unsalted).

Returns True if the password matched, False otherwise.

Parameters

• pwhash – a hashed string like returned by
generate_password_hash().

• password – the plaintext password to compare against the hash.

werkzeug.security.safe_str_cmp(a, b)
This function compares strings in somewhat constant time. This requires that the
length of at least one string is known in advance.

Returns True if the two strings are equal, or False if they are not.

147

New in version 0.7.

werkzeug.security.safe_join(directory, filename)
Safely join directory and filename. If this cannot be done, this function returns
None.

Parameters

• directory – the base directory.

• filename – the untrusted filename relative to that directory.

werkzeug.security.pbkdf2_hex(data, salt, iterations=50000, keylen=None, hash-
func=None)

Like pbkdf2_bin(), but returns a hex-encoded string.

New in version 0.9.

Parameters

• data – the data to derive.

• salt – the salt for the derivation.

• iterations – the number of iterations.

• keylen – the length of the resulting key. If not provided, the
digest size will be used.

• hashfunc – the hash function to use. This can either be the
string name of a known hash function, or a function from the
hashlib module. Defaults to sha256.

werkzeug.security.pbkdf2_bin(data, salt, iterations=50000, keylen=None, hash-
func=None)

Returns a binary digest for the PBKDF2 hash algorithm of data with the given
salt. It iterates iterations times and produces a key of keylen bytes. By default,
SHA-256 is used as hash function; a different hashlib hashfunc can be provided.

New in version 0.9.

Parameters

• data – the data to derive.

• salt – the salt for the derivation.

• iterations – the number of iterations.

• keylen – the length of the resulting key. If not provided the
digest size will be used.

• hashfunc – the hash function to use. This can either be the
string name of a known hash function or a function from the
hashlib module. Defaults to sha256.

148

CHAPTER 17

URL Helpers

werkzeug.urls used to provide several wrapper functions for Python 2 urlparse,
whose main purpose were to work around the behavior of the Py2 stdlib and its lack
of unicode support. While this was already a somewhat inconvenient situation, it got
even more complicated because Python 3’s urllib.parse actually does handle uni-
code properly. In other words, this module would wrap two libraries with completely
different behavior. So now this module contains a 2-and-3-compatible backport of
Python 3’s urllib.parse, which is mostly API-compatible.

class werkzeug.urls.BaseURL
Superclass of URL and BytesURL.

ascii_host
Works exactly like host but will return a result that is restricted to ASCII. If
it finds a netloc that is not ASCII it will attempt to idna decode it. This is
useful for socket operations when the URL might include internationalized
characters.

auth
The authentication part in the URL if available, None otherwise.

decode_netloc()
Decodes the netloc part into a string.

decode_query(*args, **kwargs)
Decodes the query part of the URL. Ths is a shortcut for calling
url_decode() on the query argument. The arguments and keyword argu-
ments are forwarded to url_decode() unchanged.

get_file_location(pathformat=None)
Returns a tuple with the location of the file in the form (server, location).

149

If the netloc is empty in the URL or points to localhost, it’s represented as
None.

The pathformat by default is autodetection but needs to be set when work-
ing with URLs of a specific system. The supported values are 'windows'
when working with Windows or DOS paths and 'posix' when working
with posix paths.

If the URL does not point to to a local file, the server and location are both
represented as None.

Parameters pathformat – The expected format of the path compo-
nent. Currently 'windows' and 'posix' are supported. Defaults
to None which is autodetect.

host
The host part of the URL if available, otherwise None. The host is either the
hostname or the IP address mentioned in the URL. It will not contain the
port.

join(*args, **kwargs)
Joins this URL with another one. This is just a convenience function for
calling into url_join() and then parsing the return value again.

password
The password if it was part of the URL, None otherwise. This undergoes
URL decoding and will always be a unicode string.

port
The port in the URL as an integer if it was present, None otherwise. This
does not fill in default ports.

raw_password
The password if it was part of the URL, None otherwise. Unlike password
this one is not being decoded.

raw_username
The username if it was part of the URL, None otherwise. Unlike username
this one is not being decoded.

replace(**kwargs)
Return an URL with the same values, except for those parameters given
new values by whichever keyword arguments are specified.

to_iri_tuple()
Returns a URL tuple that holds a IRI. This will try to decode as much infor-
mation as possible in the URL without losing information similar to how a
web browser does it for the URL bar.

It’s usually more interesting to directly call uri_to_iri() which will return
a string.

to_uri_tuple()
Returns a BytesURL tuple that holds a URI. This will encode all the infor-

150

mation in the URL properly to ASCII using the rules a web browser would
follow.

It’s usually more interesting to directly call iri_to_uri() which will return
a string.

to_url()
Returns a URL string or bytes depending on the type of the information
stored. This is just a convenience function for calling url_unparse() for this
URL.

username
The username if it was part of the URL, None otherwise. This undergoes
URL decoding and will always be a unicode string.

class werkzeug.urls.BytesURL
Represents a parsed URL in bytes.

decode(charset=’utf-8’, errors=’replace’)
Decodes the URL to a tuple made out of strings. The charset is only being
used for the path, query and fragment.

encode_netloc()
Returns the netloc unchanged as bytes.

class werkzeug.urls.Href(base=’./’, charset=’utf-8’, sort=False, key=None)
Implements a callable that constructs URLs with the given base. The function can
be called with any number of positional and keyword arguments which than are
used to assemble the URL. Works with URLs and posix paths.

Positional arguments are appended as individual segments to the path of the
URL:

>>> href = Href('/foo')
>>> href('bar', 23)
'/foo/bar/23'
>>> href('foo', bar=23)
'/foo/foo?bar=23'

If any of the arguments (positional or keyword) evaluates to None it will be
skipped. If no keyword arguments are given the last argument can be a dict
or MultiDict (or any other dict subclass), otherwise the keyword arguments are
used for the query parameters, cutting off the first trailing underscore of the pa-
rameter name:

>>> href(is_=42)
'/foo?is=42'
>>> href({'foo': 'bar'})
'/foo?foo=bar'

Combining of both methods is not allowed:

151

https://docs.python.org/dev/library/stdtypes.html#dict

>>> href({'foo': 'bar'}, bar=42)
Traceback (most recent call last):
...

TypeError: keyword arguments and query-dicts can't be combined

Accessing attributes on the href object creates a new href object with the attribute
name as prefix:

>>> bar_href = href.bar
>>> bar_href("blub")
'/foo/bar/blub'

If sort is set to True the items are sorted by key or the default sorting algorithm:

>>> href = Href("/", sort=True)
>>> href(a=1, b=2, c=3)
'/?a=1&b=2&c=3'

New in version 0.5: sort and key were added.

class werkzeug.urls.URL
Represents a parsed URL. This behaves like a regular tuple but also has some
extra attributes that give further insight into the URL.

encode(charset=’utf-8’, errors=’replace’)
Encodes the URL to a tuple made out of bytes. The charset is only being
used for the path, query and fragment.

encode_netloc()
Encodes the netloc part to an ASCII safe URL as bytes.

werkzeug.urls.iri_to_uri(iri, charset=’utf-8’, errors=’strict’,
safe_conversion=False)

Converts any unicode based IRI to an acceptable ASCII URI. Werkzeug always
uses utf-8 URLs internally because this is what browsers and HTTP do as well.
In some places where it accepts an URL it also accepts a unicode IRI and converts
it into a URI.

Examples for IRI versus URI:

>>> iri_to_uri(u'http://
N{SNOWMAN}.net/')
'http://xn--n3h.net/'
>>> iri_to_uri(u'http://üser:pässword@
N{SNOWMAN}.net/påth')
'http://%C3%BCser:p%C3%A4ssword@xn--n3h.net/p%C3%A5th'

There is a general problem with IRI and URI conversion with some protocols
that appear in the wild that are in violation of the URI specification. In places
where Werkzeug goes through a forced IRI to URI conversion it will set the
safe_conversion flag which will not perform a conversion if the end result is al-
ready ASCII. This can mean that the return value is not an entirely correct URI

152

but it will not destroy such invalid URLs in the process.

As an example consider the following two IRIs:

magnet:?xt=uri:whatever
itms-services://?action=download-manifest

The internal representation after parsing of those URLs is the same and there is
no way to reconstruct the original one. If safe conversion is enabled however this
function becomes a noop for both of those strings as they both can be considered
URIs.

New in version 0.6.

Changed in version 0.9.6: The safe_conversion parameter was added.

Parameters

• iri – The IRI to convert.

• charset – The charset for the URI.

• safe_conversion – indicates if a safe conversion should take
place. For more information see the explanation above.

werkzeug.urls.uri_to_iri(uri, charset=’utf-8’, errors=’replace’)
Converts a URI in a given charset to a IRI.

Examples for URI versus IRI:

>>> uri_to_iri(b'http://xn--n3h.net/')
u'http://\u2603.net/'
>>> uri_to_iri(b'http://%C3%BCser:p%C3%A4ssword@xn--n3h.net/p%C3%A5th')
u'http://\xfcser:p\xe4ssword@\u2603.net/p\xe5th'

Query strings are left unchanged:

>>> uri_to_iri('/?foo=24&x=%26%2f')
u'/?foo=24&x=%26%2f'

New in version 0.6.

Parameters

• uri – The URI to convert.

• charset – The charset of the URI.

• errors – The error handling on decode.

werkzeug.urls.url_decode(s, charset=’utf-8’, decode_keys=False, in-
clude_empty=True, errors=’replace’, separator=’&’,
cls=None)

Parse a querystring and return it as MultiDict. There is a difference in key decod-
ing on different Python versions. On Python 3 keys will always be fully decoded
whereas on Python 2, keys will remain bytestrings if they fit into ASCII. On 2.x
keys can be forced to be unicode by setting decode_keys to True.

153

If the charset is set to None no unicode decoding will happen and raw bytes will
be returned.

Per default a missing value for a key will default to an empty key. If you don’t
want that behavior you can set include_empty to False.

Per default encoding errors are ignored. If you want a different behavior you can
set errors to 'replace' or 'strict'. In strict mode a HTTPUnicodeError is raised.

Changed in version 0.5: In previous versions ”;” and “&” could be used for url
decoding. This changed in 0.5 where only “&” is supported. If you want to use
”;” instead a different separator can be provided.

The cls parameter was added.

Parameters

• s – a string with the query string to decode.

• charset – the charset of the query string. If set to None no uni-
code decoding will take place.

• decode_keys – Used on Python 2.x to control whether keys
should be forced to be unicode objects. If set to True then keys
will be unicode in all cases. Otherwise, they remain str if they
fit into ASCII.

• include_empty – Set to False if you don’t want empty values to
appear in the dict.

• errors – the decoding error behavior.

• separator – the pair separator to be used, defaults to &

• cls – an optional dict class to use. If this is not specified or
None the default MultiDict is used.

werkzeug.urls.url_decode_stream(stream, charset=’utf-8’, decode_keys=False,
include_empty=True, errors=’replace’,
separator=’&’, cls=None, limit=None, re-
turn_iterator=False)

Works like url_decode() but decodes a stream. The behavior of stream and limit
follows functions like make_line_iter(). The generator of pairs is directly fed to
the cls so you can consume the data while it’s parsed.

New in version 0.8.

Parameters

• stream – a stream with the encoded querystring

• charset – the charset of the query string. If set to None no uni-
code decoding will take place.

• decode_keys – Used on Python 2.x to control whether keys
should be forced to be unicode objects. If set to True, keys will

154

be unicode in all cases. Otherwise, they remain str if they fit
into ASCII.

• include_empty – Set to False if you don’t want empty values to
appear in the dict.

• errors – the decoding error behavior.

• separator – the pair separator to be used, defaults to &

• cls – an optional dict class to use. If this is not specified or
None the default MultiDict is used.

• limit – the content length of the URL data. Not necessary if a
limited stream is provided.

• return_iterator – if set to True the cls argument is ignored and
an iterator over all decoded pairs is returned

werkzeug.urls.url_encode(obj, charset=’utf-8’, encode_keys=False, sort=False,
key=None, separator=’&’)

URL encode a dict/MultiDict. If a value is None it will not appear in the result
string. Per default only values are encoded into the target charset strings. If
encode_keys is set to True unicode keys are supported too.

If sort is set to True the items are sorted by key or the default sorting algorithm.

New in version 0.5: sort, key, and separator were added.

Parameters

• obj – the object to encode into a query string.

• charset – the charset of the query string.

• encode_keys – set to True if you have unicode keys. (Ignored
on Python 3.x)

• sort – set to True if you want parameters to be sorted by key.

• separator – the separator to be used for the pairs.

• key – an optional function to be used for sorting. For more
details check out the sorted() documentation.

werkzeug.urls.url_encode_stream(obj, stream=None, charset=’utf-8’, en-
code_keys=False, sort=False, key=None,
separator=’&’)

Like url_encode() but writes the results to a stream object. If the stream is None
a generator over all encoded pairs is returned.

New in version 0.8.

Parameters

• obj – the object to encode into a query string.

155

https://docs.python.org/dev/library/functions.html#sorted

• stream – a stream to write the encoded object into or None if
an iterator over the encoded pairs should be returned. In that
case the separator argument is ignored.

• charset – the charset of the query string.

• encode_keys – set to True if you have unicode keys. (Ignored
on Python 3.x)

• sort – set to True if you want parameters to be sorted by key.

• separator – the separator to be used for the pairs.

• key – an optional function to be used for sorting. For more
details check out the sorted() documentation.

werkzeug.urls.url_fix(s, charset=’utf-8’)
Sometimes you get an URL by a user that just isn’t a real URL because it contains
unsafe characters like ‘ ‘ and so on. This function can fix some of the problems in
a similar way browsers handle data entered by the user:

>>> url_fix(u'http://de.wikipedia.org/wiki/Elf (Begriffskl\xe4rung)')
'http://de.wikipedia.org/wiki/Elf%20(Begriffskl%C3%A4rung)'

Parameters

• s – the string with the URL to fix.

• charset – The target charset for the URL if the url was given as
unicode string.

werkzeug.urls.url_join(base, url, allow_fragments=True)
Join a base URL and a possibly relative URL to form an absolute interpretation
of the latter.

Parameters

• base – the base URL for the join operation.

• url – the URL to join.

• allow_fragments – indicates whether fragments should be al-
lowed.

werkzeug.urls.url_parse(url, scheme=None, allow_fragments=True)
Parses a URL from a string into a URL tuple. If the URL is lacking a scheme it can
be provided as second argument. Otherwise, it is ignored. Optionally fragments
can be stripped from the URL by setting allow_fragments to False.

The inverse of this function is url_unparse().

Parameters

• url – the URL to parse.

• scheme – the default schema to use if the URL is schemaless.

156

https://docs.python.org/dev/library/functions.html#sorted

• allow_fragments – if set to False a fragment will be removed
from the URL.

werkzeug.urls.url_quote(string, charset=’utf-8’, errors=’strict’, safe=’/:’, un-
safe=’‘)

URL encode a single string with a given encoding.

Parameters

• s – the string to quote.

• charset – the charset to be used.

• safe – an optional sequence of safe characters.

• unsafe – an optional sequence of unsafe characters.

New in version 0.9.2: The unsafe parameter was added.

werkzeug.urls.url_quote_plus(string, charset=’utf-8’, errors=’strict’, safe=’‘)
URL encode a single string with the given encoding and convert whitespace to
“+”.

Parameters

• s – The string to quote.

• charset – The charset to be used.

• safe – An optional sequence of safe characters.

werkzeug.urls.url_unparse(components)
The reverse operation to url_parse(). This accepts arbitrary as well as URL tuples
and returns a URL as a string.

Parameters components – the parsed URL as tuple which should be
converted into a URL string.

werkzeug.urls.url_unquote(string, charset=’utf-8’, errors=’replace’, unsafe=’‘)
URL decode a single string with a given encoding. If the charset is set to None no
unicode decoding is performed and raw bytes are returned.

Parameters

• s – the string to unquote.

• charset – the charset of the query string. If set to None no uni-
code decoding will take place.

• errors – the error handling for the charset decoding.

werkzeug.urls.url_unquote_plus(s, charset=’utf-8’, errors=’replace’)
URL decode a single string with the given charset and decode “+” to whitespace.

Per default encoding errors are ignored. If you want a different behavior you can
set errors to 'replace' or 'strict'. In strict mode a HTTPUnicodeError is raised.

Parameters

• s – The string to unquote.

157

• charset – the charset of the query string. If set to None no uni-
code decoding will take place.

• errors – The error handling for the charset decoding.

158

CHAPTER 18

Context Locals

Sooner or later you have some things you want to have in every single view or helper
function or whatever. In PHP the way to go are global variables. However, that isn’t
possible in WSGI applications without a major drawback: As soon as you operate on
the global namespace your application isn’t thread-safe any longer.

The Python standard library has a concept called “thread locals” (or thread-local data).
A thread local is a global object in which you can put stuff in and get back later in
a thread-safe and thread-specific way. That means that whenever you set or get a
value on a thread local object, the thread local object checks in which thread you are
and retrieves the value corresponding to your thread (if one exists). So, you won’t
accidentally get another thread’s data.

This approach, however, has a few disadvantages. For example, besides threads, there
are other types of concurrency in Python. A very popular one is greenlets. Also,
whether every request gets its own thread is not guaranteed in WSGI. It could be that
a request is reusing a thread from a previous request, and hence data is left over in the
thread local object.

Werkzeug provides its own implementation of local data storage called werkzeug.local.
This approach provides a similar functionality to thread locals but also works with
greenlets.

Here’s a simple example of how one could use werkzeug.local:

from werkzeug.local import Local, LocalManager

local = Local()
local_manager = LocalManager([local])

def application(environ, start_response):

159

local.request = request = Request(environ)
...

application = local_manager.make_middleware(application)

This binds the request to local.request. Every other piece of code executed after this
assignment in the same context can safely access local.request and will get the same
request object. The make_middleware method on the local manager ensures that all
references to the local objects are cleared up after the request.

The same context means the same greenlet (if you’re using greenlets) in the same
thread and same process.

If a request object is not yet set on the local object and you try to access it, you will get
an AttributeError. You can use getattr to avoid that:

def get_request():
return getattr(local, 'request', None)

This will try to get the request or return None if the request is not (yet?) available.

Note that local objects cannot manage themselves, for that you need a local manager.
You can pass a local manager multiple locals or add additionals later by appending
them to manager.locals and every time the manager cleans up it will clean up all the
data left in the locals for this context.

werkzeug.local.release_local(local)
Releases the contents of the local for the current context. This makes it possible
to use locals without a manager.

Example:

>>> loc = Local()
>>> loc.foo = 42
>>> release_local(loc)
>>> hasattr(loc, 'foo')
False

With this function one can release Local objects as well as LocalStack objects.
However it is not possible to release data held by proxies that way, one always
has to retain a reference to the underlying local object in order to be able to release
it.

New in version 0.6.1.

class werkzeug.local.LocalManager(locals=None, ident_func=None)
Local objects cannot manage themselves. For that you need a local manager. You
can pass a local manager multiple locals or add them later by appending them
to manager.locals. Every time the manager cleans up, it will clean up all the data
left in the locals for this context.

The ident_func parameter can be added to override the default ident function for
the wrapped locals.

160

Changed in version 0.6.1: Instead of a manager the release_local() function
can be used as well.

Changed in version 0.7: ident_func was added.

cleanup()
Manually clean up the data in the locals for this context. Call this at the end
of the request or use make_middleware().

get_ident()
Return the context identifier the local objects use internally for this context.
You cannot override this method to change the behavior but use it to link
other context local objects (such as SQLAlchemy’s scoped sessions) to the
Werkzeug locals.

Changed in version 0.7: You can pass a different ident function to the local
manager that will then be propagated to all the locals passed to the con-
structor.

make_middleware(app)
Wrap a WSGI application so that cleaning up happens after request end.

middleware(func)
Like make_middleware but for decorating functions.

Example usage:

@manager.middleware
def application(environ, start_response):

...

The difference to make_middleware is that the function passed will have all
the arguments copied from the inner application (name, docstring, module).

class werkzeug.local.LocalStack
This class works similar to a Local but keeps a stack of objects instead. This is
best explained with an example:

>>> ls = LocalStack()
>>> ls.push(42)
>>> ls.top
42
>>> ls.push(23)
>>> ls.top
23
>>> ls.pop()
23
>>> ls.top
42

They can be force released by using a LocalManager or with the release_local()
function but the correct way is to pop the item from the stack after using. When
the stack is empty it will no longer be bound to the current context (and as such

161

released).

By calling the stack without arguments it returns a proxy that resolves to the
topmost item on the stack.

New in version 0.6.1.

pop()
Removes the topmost item from the stack, will return the old value or None
if the stack was already empty.

push(obj)
Pushes a new item to the stack

top
The topmost item on the stack. If the stack is empty, None is returned.

class werkzeug.local.LocalProxy(local, name=None)
Acts as a proxy for a werkzeug local. Forwards all operations to a proxied object.
The only operations not supported for forwarding are right handed operands
and any kind of assignment.

Example usage:

from werkzeug.local import Local
l = Local()

these are proxies
request = l('request')
user = l('user')

from werkzeug.local import LocalStack
_response_local = LocalStack()

this is a proxy
response = _response_local()

Whenever something is bound to l.user / l.request the proxy objects will forward
all operations. If no object is bound a RuntimeError will be raised.

To create proxies to Local or LocalStack objects, call the object as shown above.
If you want to have a proxy to an object looked up by a function, you can (as of
Werkzeug 0.6.1) pass a function to the LocalProxy constructor:

session = LocalProxy(lambda: get_current_request().session)

Changed in version 0.6.1: The class can be instantiated with a callable as well
now.

Keep in mind that repr() is also forwarded, so if you want to find out if you are
dealing with a proxy you can do an isinstance() check:

162

https://docs.python.org/dev/library/exceptions.html#RuntimeError

>>> from werkzeug.local import LocalProxy
>>> isinstance(request, LocalProxy)
True

You can also create proxy objects by hand:

from werkzeug.local import Local, LocalProxy
local = Local()
request = LocalProxy(local, 'request')

_get_current_object()
Return the current object. This is useful if you want the real object behind
the proxy at a time for performance reasons or because you want to pass the
object into a different context.

163

164

CHAPTER 19

Middlewares

Middlewares wrap applications to dispatch between them or provide additional re-
quest handling. Additionally to the middlewares documented here, there is also the
DebuggedApplication class that is implemented as a WSGI middleware.

class werkzeug.wsgi.SharedDataMiddleware(app, exports, disallow=None,
cache=True, cache_timeout=43200,
fallback_mimetype=’text/plain’)

A WSGI middleware that provides static content for development environments
or simple server setups. Usage is quite simple:

import os
from werkzeug.wsgi import SharedDataMiddleware

app = SharedDataMiddleware(app, {
'/shared': os.path.join(os.path.dirname(__file__), 'shared')

})

The contents of the folder ./shared will now be available on http://example.
com/shared/. This is pretty useful during development because a standalone
media server is not required. One can also mount files on the root folder and still
continue to use the application because the shared data middleware forwards all
unhandled requests to the application, even if the requests are below one of the
shared folders.

If pkg_resources is available you can also tell the middleware to serve files from
package data:

app = SharedDataMiddleware(app, {
'/shared': ('myapplication', 'shared_files')

165

})

This will then serve the shared_files folder in the myapplication Python package.

The optional disallow parameter can be a list of fnmatch() rules for files that are
not accessible from the web. If cache is set to False no caching headers are sent.

Currently the middleware does not support non ASCII filenames. If the encoding
on the file system happens to be the encoding of the URI it may work but this
could also be by accident. We strongly suggest using ASCII only file names for
static files.

The middleware will guess the mimetype using the Python mimetype module. If
it’s unable to figure out the charset it will fall back to fallback_mimetype.

Changed in version 0.5: The cache timeout is configurable now.

New in version 0.6: The fallback_mimetype parameter was added.

Parameters

• app – the application to wrap. If you don’t want to wrap an
application you can pass it NotFound.

• exports – a dict of exported files and folders.

• disallow – a list of fnmatch() rules.

• fallback_mimetype – the fallback mimetype for unknown files.

• cache – enable or disable caching headers.

• cache_timeout – the cache timeout in seconds for the headers.

is_allowed(filename)
Subclasses can override this method to disallow the access to certain files.
However by providing disallow in the constructor this method is overwrit-
ten.

class werkzeug.wsgi.DispatcherMiddleware(app, mounts=None)
Allows one to mount middlewares or applications in a WSGI application. This
is useful if you want to combine multiple WSGI applications:

app = DispatcherMiddleware(app, {
'/app2': app2,
'/app3': app3

})

Also there’s the . . .

werkzeug._internal._easteregg(app=None)
Like the name says. But who knows how it works?

166

https://docs.python.org/dev/library/fnmatch.html#fnmatch.fnmatch
https://docs.python.org/dev/library/fnmatch.html#fnmatch.fnmatch

CHAPTER 20

HTTP Exceptions

This module implements a number of Python exceptions you can raise from within
your views to trigger a standard non-200 response.

Usage Example

from werkzeug.wrappers import BaseRequest
from werkzeug.wsgi import responder
from werkzeug.exceptions import HTTPException, NotFound

def view(request):
raise NotFound()

@responder
def application(environ, start_response):

request = BaseRequest(environ)
try:

return view(request)
except HTTPException as e:

return e

As you can see from this example those exceptions are callable WSGI applications.
Because of Python 2.4 compatibility those do not extend from the response objects but
only from the python exception class.

As a matter of fact they are not Werkzeug response objects. However you can get a
response object by calling get_response() on a HTTP exception.

167

Keep in mind that you have to pass an environment to get_response() because some
errors fetch additional information from the WSGI environment.

If you want to hook in a different exception page to say, a 404 status code, you can add
a second except for a specific subclass of an error:

@responder
def application(environ, start_response):

request = BaseRequest(environ)
try:

return view(request)
except NotFound, e:

return not_found(request)
except HTTPException, e:

return e

Error Classes

The following error classes exist in Werkzeug:

exception werkzeug.exceptions.BadRequest(description=None, response=None)
400 Bad Request

Raise if the browser sends something to the application the application or server
cannot handle.

exception werkzeug.exceptions.Unauthorized(description=None, re-
sponse=None)

401 Unauthorized

Raise if the user is not authorized. Also used if you want to use HTTP basic auth.

exception werkzeug.exceptions.Forbidden(description=None, response=None)
403 Forbidden

Raise if the user doesn’t have the permission for the requested resource but was
authenticated.

exception werkzeug.exceptions.NotFound(description=None, response=None)
404 Not Found

Raise if a resource does not exist and never existed.

exception werkzeug.exceptions.MethodNotAllowed(valid_methods=None, de-
scription=None)

405 Method Not Allowed

Raise if the server used a method the resource does not handle. For example
POST if the resource is view only. Especially useful for REST.

The first argument for this exception should be a list of allowed methods. Strictly
speaking the response would be invalid if you don’t provide valid methods in
the header which you can do with that list.

168

exception werkzeug.exceptions.NotAcceptable(description=None, re-
sponse=None)

406 Not Acceptable

Raise if the server can’t return any content conforming to the Accept headers of
the client.

exception werkzeug.exceptions.RequestTimeout(description=None, re-
sponse=None)

408 Request Timeout

Raise to signalize a timeout.

exception werkzeug.exceptions.Conflict(description=None, response=None)
409 Conflict

Raise to signal that a request cannot be completed because it conflicts with the
current state on the server.

New in version 0.7.

exception werkzeug.exceptions.Gone(description=None, response=None)
410 Gone

Raise if a resource existed previously and went away without new location.

exception werkzeug.exceptions.LengthRequired(description=None, re-
sponse=None)

411 Length Required

Raise if the browser submitted data but no Content-Length header which is re-
quired for the kind of processing the server does.

exception werkzeug.exceptions.PreconditionFailed(description=None, re-
sponse=None)

412 Precondition Failed

Status code used in combination with If-Match, If-None-Match, or
If-Unmodified-Since.

exception werkzeug.exceptions.RequestEntityTooLarge(description=None,
response=None)

413 Request Entity Too Large

The status code one should return if the data submitted exceeded a given limit.

exception werkzeug.exceptions.RequestURITooLarge(description=None, re-
sponse=None)

414 Request URI Too Large

Like 413 but for too long URLs.

exception werkzeug.exceptions.UnsupportedMediaType(description=None,
response=None)

415 Unsupported Media Type

The status code returned if the server is unable to handle the media type the
client transmitted.

169

exception werkzeug.exceptions.RequestedRangeNotSatisfiable(length=None,
units=’bytes’,
descrip-
tion=None)

416 Requested Range Not Satisfiable

The client asked for an invalid part of the file.

New in version 0.7.

exception werkzeug.exceptions.ExpectationFailed(description=None, re-
sponse=None)

417 Expectation Failed

The server cannot meet the requirements of the Expect request-header.

New in version 0.7.

exception werkzeug.exceptions.ImATeapot(description=None, response=None)
418 I’m a teapot

The server should return this if it is a teapot and someone attempted to brew
coffee with it.

New in version 0.7.

exception werkzeug.exceptions.PreconditionRequired(description=None,
response=None)

428 Precondition Required

The server requires this request to be conditional, typically to prevent the lost
update problem, which is a race condition between two or more clients attempt-
ing to update a resource through PUT or DELETE. By requiring each client to
include a conditional header (“If-Match” or “If-Unmodified- Since”) with the
proper value retained from a recent GET request, the server ensures that each
client has at least seen the previous revision of the resource.

exception werkzeug.exceptions.TooManyRequests(description=None, re-
sponse=None)

429 Too Many Requests

The server is limiting the rate at which this user receives responses, and this
request exceeds that rate. (The server may use any convenient method to identify
users and their request rates). The server may include a “Retry-After” header to
indicate how long the user should wait before retrying.

exception werkzeug.exceptions.RequestHeaderFieldsTooLarge(description=None,
re-
sponse=None)

431 Request Header Fields Too Large

The server refuses to process the request because the header fields are too large.
One or more individual fields may be too large, or the set of all headers is too
large.

170

exception werkzeug.exceptions.InternalServerError(description=None, re-
sponse=None)

500 Internal Server Error

Raise if an internal server error occurred. This is a good fallback if an unknown
error occurred in the dispatcher.

exception werkzeug.exceptions.NotImplemented(description=None, re-
sponse=None)

501 Not Implemented

Raise if the application does not support the action requested by the browser.

exception werkzeug.exceptions.BadGateway(description=None, response=None)
502 Bad Gateway

If you do proxying in your application you should return this status code if you
received an invalid response from the upstream server it accessed in attempting
to fulfill the request.

exception werkzeug.exceptions.ServiceUnavailable(description=None, re-
sponse=None)

503 Service Unavailable

Status code you should return if a service is temporarily unavailable.

exception werkzeug.exceptions.HTTPUnicodeError
This exception is used to signal unicode decode errors of request data. For more
information see the Unicode chapter.

exception werkzeug.exceptions.ClientDisconnected(description=None, re-
sponse=None)

Internal exception that is raised if Werkzeug detects a disconnected client. Since
the client is already gone at that point attempting to send the error message to
the client might not work and might ultimately result in another exception in the
server. Mainly this is here so that it is silenced by default as far as Werkzeug is
concerned.

Since disconnections cannot be reliably detected and are unspecified by WSGI to
a large extent this might or might not be raised if a client is gone.

New in version 0.8.

exception werkzeug.exceptions.SecurityError(description=None, re-
sponse=None)

Raised if something triggers a security error. This is otherwise exactly like a bad
request error.

New in version 0.9.

Baseclass

All the exceptions implement this common interface:

171

exception werkzeug.exceptions.HTTPException(description=None, re-
sponse=None)

Baseclass for all HTTP exceptions. This exception can be called as WSGI applica-
tion to render a default error page or you can catch the subclasses of it indepen-
dently and render nicer error messages.

__call__(environ, start_response)
Call the exception as WSGI application.

Parameters

• environ – the WSGI environment.

• start_response – the response callable provided by the
WSGI server.

get_response(environ=None)
Get a response object. If one was passed to the exception it’s returned di-
rectly.

Parameters environ – the optional environ for the request. This can
be used to modify the response depending on how the request
looked like.

Returns a Response object or a subclass thereof.

Special HTTP Exceptions

Starting with Werkzeug 0.3 some of the builtin classes raise exceptions that look like
regular python exceptions (eg KeyError) but are BadRequest HTTP exceptions at the
same time. This decision was made to simplify a common pattern where you want to
abort if the client tampered with the submitted form data in a way that the application
can’t recover properly and should abort with 400 BAD REQUEST.

Assuming the application catches all HTTP exceptions and reacts to them properly a
view function could do the following safely and doesn’t have to check if the keys exist:

def new_post(request):
post = Post(title=request.form['title'], body=request.form['body'])
post.save()
return redirect(post.url)

If title or body are missing in the form, a special key error will be raised which behaves
like a KeyError but also a BadRequest exception.

Simple Aborting

Sometimes it’s convenient to just raise an exception by the error code, without import-
ing the exception and looking up the name etc. For this purpose there is the abort()

172

https://docs.python.org/dev/library/exceptions.html#KeyError
https://docs.python.org/dev/library/exceptions.html#KeyError

function.

werkzeug.exceptions.abort(status, *args, **kwargs)
Raises an HTTPException for the given status code or WSGI application:

abort(404) # 404 Not Found
abort(Response('Hello World'))

Can be passed a WSGI application or a status code. If a status code is given it’s
looked up in the list of exceptions and will raise that exception, if passed a WSGI
application it will wrap it in a proxy WSGI exception and raise that:

abort(404)
abort(Response('Hello World'))

If you want to use this functionality with custom exceptions you can create an instance
of the aborter class:

class werkzeug.exceptions.Aborter(mapping=None, extra=None)
When passed a dict of code -> exception items it can be used as callable that raises
exceptions. If the first argument to the callable is an integer it will be looked up
in the mapping, if it’s a WSGI application it will be raised in a proxy exception.

The rest of the arguments are forwarded to the exception constructor.

Custom Errors

As you can see from the list above not all status codes are available as errors. Especially
redirects and other non 200 status codes that do not represent errors are missing. For
redirects you can use the redirect() function from the utilities.

If you want to add an error yourself you can subclass HTTPException:

from werkzeug.exceptions import HTTPException

class PaymentRequired(HTTPException):
code = 402
description = '<p>Payment required.</p>'

This is the minimal code you need for your own exception. If you want to
add more logic to the errors you can override the get_description(), get_body(),
get_headers() and get_response() methods. In any case you should have a look at
the sourcecode of the exceptions module.

You can override the default description in the constructor with the description param-
eter (it’s the first argument for all exceptions except of the MethodNotAllowed which
accepts a list of allowed methods as first argument):

raise BadRequest('Request failed because X was not present')

173

174

Part IV

DEPLOYMENT

This section covers running your application in production on a web server such as
Apache or lighttpd.

175

176

CHAPTER 21

Application Deployment

This section covers running your application in production on a web server such as
Apache or lighttpd.

CGI

If all other deployment methods do not work, CGI will work for sure. CGI is sup-
ported by all major servers but usually has a less-than-optimal performance.

This is also the way you can use a Werkzeug application on Google’s AppEngine, there
however the execution does happen in a CGI-like environment. The application’s per-
formance is unaffected because of that.

Creating a .cgi file

First you need to create the CGI application file. Let’s call it yourapplication.cgi:

#!/usr/bin/python
from wsgiref.handlers import CGIHandler
from yourapplication import make_app

application = make_app()
CGIHandler().run(application)

If you’re running Python 2.4 you will need the wsgiref package. Python 2.5 and higher
ship this as part of the standard library.

177

http://code.google.com/appengine/
https://docs.python.org/dev/library/wsgiref.html#module-wsgiref

Server Setup

Usually there are two ways to configure the server. Either just copy the .cgi into a
cgi-bin (and use mod_rerwite or something similar to rewrite the URL) or let the server
point to the file directly.

In Apache for example you can put a like like this into the config:

ScriptAlias /app /path/to/the/application.cgi

For more information consult the documentation of your webserver.

mod_wsgi (Apache)

If you are using the Apache webserver you should consider using mod_wsgi.

Installing mod_wsgi

If you don’t have mod_wsgi installed yet you have to either install it using a package
manager or compile it yourself.

The mod_wsgi installation instructions cover installation instructions for source in-
stallations on UNIX systems.

If you are using ubuntu / debian you can apt-get it and activate it as follows:

apt-get install libapache2-mod-wsgi

On FreeBSD install mod_wsgi by compiling the www/mod_wsgi port or by using
pkg_add:

pkg_add -r mod_wsgi

If you are using pkgsrc you can install mod_wsgi by compiling the www/ap2-wsgi pack-
age.

If you encounter segfaulting child processes after the first apache reload you can safely
ignore them. Just restart the server.

Creating a .wsgi file

To run your application you need a yourapplication.wsgi file. This file contains the code
mod_wsgi is executing on startup to get the application object. The object called appli-
cation in that file is then used as application.

For most applications the following file should be sufficient:

178

http://httpd.apache.org/
http://code.google.com/p/modwsgi/
http://code.google.com/p/modwsgi/wiki/QuickInstallationGuide

from yourapplication import make_app
application = make_app()

If you don’t have a factory function for application creation but a singleton instance
you can directly import that one as application.

Store that file somewhere where you will find it again (eg: /var/www/yourapplication)
and make sure that yourapplication and all the libraries that are in use are on the python
load path. If you don’t want to install it system wide consider using a virtual python
instance.

Configuring Apache

The last thing you have to do is to create an Apache configuration file for your ap-
plication. In this example we are telling mod_wsgi to execute the application under a
different user for security reasons:

<VirtualHost *>
ServerName example.com

WSGIDaemonProcess yourapplication user=user1 group=group1 processes=2 threads=5
WSGIScriptAlias / /var/www/yourapplication/yourapplication.wsgi

<Directory /var/www/yourapplication>
WSGIProcessGroup yourapplication
WSGIApplicationGroup %{GLOBAL}
Order deny,allow
Allow from all

</Directory>
</VirtualHost>

For more information consult the mod_wsgi wiki.

FastCGI

A very popular deployment setup on servers like lighttpd and nginx is FastCGI. To
use your WSGI application with any of them you will need a FastCGI server first.

The most popular one is flup which we will use for this guide. Make sure to have it
installed.

Creating a .fcgi file

First you need to create the FastCGI server file. Let’s call it yourapplication.fcgi:

179

http://pypi.python.org/pypi/virtualenv
http://code.google.com/p/modwsgi/wiki/
http://www.lighttpd.net/
http://nginx.net/
http://trac.saddi.com/flup

#!/usr/bin/python
from flup.server.fcgi import WSGIServer
from yourapplication import make_app

if __name__ == '__main__':
application = make_app()
WSGIServer(application).run()

This is enough for Apache to work, however ngingx and older versions of lighttpd
need a socket to be explicitly passed to communicate with the FastCGI server. For that
to work you need to pass the path to the socket to the WSGIServer:

WSGIServer(application, bindAddress='/path/to/fcgi.sock').run()

The path has to be the exact same path you define in the server config.

Save the yourapplication.fcgi file somewhere you will find it again. It makes sense to
have that in /var/www/yourapplication or something similar.

Make sure to set the executable bit on that file so that the servers can execute it:

chmod +x /var/www/yourapplication/yourapplication.fcgi

Configuring lighttpd

A basic FastCGI configuration for lighttpd looks like this:

fastcgi.server = ("/yourapplication.fcgi" =>
((

"socket" => "/tmp/yourapplication-fcgi.sock",
"bin-path" => "/var/www/yourapplication/yourapplication.fcgi",
"check-local" => "disable",
"max-procs" -> 1

))
)

alias.url = (
"/static/" => "/path/to/your/static"

)

url.rewrite-once = (
"^(/static.*)$" => "$1",
"^(/.*)$" => "/yourapplication.fcgi$1"

Remember to enable the FastCGI, alias and rewrite modules. This configuration binds
the application to /yourapplication. If you want the application to work in the URL root
you have to work around a lighttpd bug with the LighttpdCGIRootFix middleware.

Make sure to apply it only if you are mounting the application the URL root. Also,
see the Lighty docs for more information on FastCGI and Python (note that explicitly

180

http://redmine.lighttpd.net/wiki/lighttpd/Docs:ModFastCGI

passing a socket to run() is no longer necessary).

Configuring nginx

Installing FastCGI applications on nginx is a bit tricky because by default some
FastCGI parameters are not properly forwarded.

A basic FastCGI configuration for nginx looks like this:

location /yourapplication/ {
include fastcgi_params;
if ($uri ~ ^/yourapplication/(.*)?) {

set $path_url $1;
}
fastcgi_param PATH_INFO $path_url;
fastcgi_param SCRIPT_NAME /yourapplication;
fastcgi_pass unix:/tmp/yourapplication-fcgi.sock;

}

This configuration binds the application to /yourapplication. If you want to have it in
the URL root it’s a bit easier because you don’t have to figure out how to calculate
PATH_INFO and SCRIPT_NAME:

location /yourapplication/ {
include fastcgi_params;
fastcgi_param PATH_INFO $fastcgi_script_name;
fastcgi_param SCRIPT_NAME "";
fastcgi_pass unix:/tmp/yourapplication-fcgi.sock;

}

Since Nginx doesn’t load FastCGI apps, you have to do it by yourself. You can either
write an init.d script for that or execute it inside a screen session:

$ screen
$ /var/www/yourapplication/yourapplication.fcgi

Debugging

FastCGI deployments tend to be hard to debug on most webservers. Very often the
only thing the server log tells you is something along the lines of “premature end of
headers”. In order to debug the application the only thing that can really give you
ideas why it breaks is switching to the correct user and executing the application by
hand.

This example assumes your application is called application.fcgi and that your web-
server user is www-data:

$ su www-data
$ cd /var/www/yourapplication

181

$ python application.fcgi
Traceback (most recent call last):
File "yourapplication.fcg", line 4, in <module>

ImportError: No module named yourapplication

In this case the error seems to be “yourapplication” not being on the python path.
Common problems are:

• relative paths being used. Don’t rely on the current working directory

• the code depending on environment variables that are not set by the web server.

• different python interpreters being used.

HTTP Proxying

Many people prefer using a standalone Python HTTP server and proxying that server
via nginx, Apache etc.

A very stable Python server is CherryPy. This part of the documentation shows you
how to combine your WSGI application with the CherryPy WSGI server and how to
configure the webserver for proxying.

Creating a .py server

To run your application you need a start-server.py file that starts up the WSGI Server.

It looks something along these lines:

from cherrypy import wsgiserver
from yourapplication import make_app
server = wsgiserver.CherryPyWSGIServer(('localhost', 8080), make_app())
try:

server.start()
except KeyboardInterrupt:

server.stop()

If you now start the file the server will listen on localhost:8080. Keep in mind that WSGI
applications behave slightly different for proxied setups. If you have not developed
your application for proxying in mind, you can apply the ProxyFix middleware.

Configuring nginx

As an example we show here how to configure nginx to proxy to the server.

The basic nginx configuration looks like this:

182

location / {
proxy_set_header Host $host;
proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
proxy_pass http://127.0.0.1:8080;
proxy_redirect default;

}

Since Nginx doesn’t start your server for you, you have to do it by yourself. You can
either write an init.d script for that or execute it inside a screen session:

$ screen
$ python start-server.py

183

184

Part V

CONTRIBUTED MODULES

A lot of useful code contributed by the community is shipped with Werkzeug as part
of the contrib module:

185

186

CHAPTER 22

Contributed Modules

A lot of useful code contributed by the community is shipped with Werkzeug as part
of the contrib module:

Atom Syndication

This module provides a class called AtomFeed which can be used to generate feeds in
the Atom syndication format (see RFC 4287).

Example:

def atom_feed(request):
feed = AtomFeed("My Blog", feed_url=request.url,

url=request.host_url,
subtitle="My example blog for a feed test.")

for post in Post.query.limit(10).all():
feed.add(post.title, post.body, content_type='html',

author=post.author, url=post.url, id=post.uid,
updated=post.last_update, published=post.pub_date)

return feed.get_response()

class werkzeug.contrib.atom.AtomFeed(title=None, entries=None, **kwargs)
A helper class that creates Atom feeds.

Parameters

• title – the title of the feed. Required.

• title_type – the type attribute for the title element. One of
'html', 'text' or 'xhtml'.

187

https://tools.ietf.org/html/rfc4287.html

• url – the url for the feed (not the url of the feed)

• id – a globally unique id for the feed. Must be an URI. If not
present the feed_url is used, but one of both is required.

• updated – the time the feed was modified the last time. Must
be a datetime.datetime object. If not present the latest entry’s
updated is used. Treated as UTC if naive datetime.

• feed_url – the URL to the feed. Should be the URL that was
requested.

• author – the author of the feed. Must be either a string (the
name) or a dict with name (required) and uri or email (both
optional). Can be a list of (may be mixed, too) strings and dicts,
too, if there are multiple authors. Required if not every entry
has an author element.

• icon – an icon for the feed.

• logo – a logo for the feed.

• rights – copyright information for the feed.

• rights_type – the type attribute for the rights element. One of
'html', 'text' or 'xhtml'. Default is 'text'.

• subtitle – a short description of the feed.

• subtitle_type – the type attribute for the subtitle element.
One of 'text', 'html', 'text' or 'xhtml'. Default is 'text'.

• links – additional links. Must be a list of dictionaries with href
(required) and rel, type, hreflang, title, length (all optional)

• generator – the software that generated this feed. This must be
a tuple in the form (name, url, version). If you don’t want
to specify one of them, set the item to None.

• entries – a list with the entries for the feed. Entries can also be
added later with add().

For more information on the elements see http://www.atomenabled.org/
developers/syndication/

Everywhere where a list is demanded, any iterable can be used.

add(*args, **kwargs)
Add a new entry to the feed. This function can either be called with a
FeedEntry or some keyword and positional arguments that are forwarded
to the FeedEntry constructor.

generate()
Return a generator that yields pieces of XML.

get_response()
Return a response object for the feed.

188

https://docs.python.org/dev/library/datetime.html#datetime.datetime
http://www.atomenabled.org/developers/syndication/
http://www.atomenabled.org/developers/syndication/

to_string()
Convert the feed into a string.

class werkzeug.contrib.atom.FeedEntry(title=None, content=None,
feed_url=None, **kwargs)

Represents a single entry in a feed.

Parameters

• title – the title of the entry. Required.

• title_type – the type attribute for the title element. One of
'html', 'text' or 'xhtml'.

• content – the content of the entry.

• content_type – the type attribute for the content element. One
of 'html', 'text' or 'xhtml'.

• summary – a summary of the entry’s content.

• summary_type – the type attribute for the summary element.
One of 'html', 'text' or 'xhtml'.

• url – the url for the entry.

• id – a globally unique id for the entry. Must be an URI. If not
present the URL is used, but one of both is required.

• updated – the time the entry was modified the last time. Must
be a datetime.datetime object. Treated as UTC if naive date-
time. Required.

• author – the author of the entry. Must be either a string (the
name) or a dict with name (required) and uri or email (both
optional). Can be a list of (may be mixed, too) strings and dicts,
too, if there are multiple authors. Required if the feed does not
have an author element.

• published – the time the entry was initially published. Must be
a datetime.datetime object. Treated as UTC if naive datetime.

• rights – copyright information for the entry.

• rights_type – the type attribute for the rights element. One of
'html', 'text' or 'xhtml'. Default is 'text'.

• links – additional links. Must be a list of dictionaries with href
(required) and rel, type, hreflang, title, length (all optional)

• categories – categories for the entry. Must be a list of dictio-
naries with term (required), scheme and label (all optional)

• xml_base – The xml base (url) for this feed item. If not provided
it will default to the item url.

For more information on the elements see http://www.atomenabled.org/
developers/syndication/

189

https://docs.python.org/dev/library/datetime.html#datetime.datetime
https://docs.python.org/dev/library/datetime.html#datetime.datetime
http://www.atomenabled.org/developers/syndication/
http://www.atomenabled.org/developers/syndication/

Everywhere where a list is demanded, any iterable can be used.

Sessions

This module contains some helper classes that help one to add session support to a
python WSGI application. For full client-side session storage see securecookie which
implements a secure, client-side session storage.

Application Integration

from werkzeug.contrib.sessions import SessionMiddleware, \
FilesystemSessionStore

app = SessionMiddleware(app, FilesystemSessionStore())

The current session will then appear in the WSGI environment as werkzeug.session.
However it’s recommended to not use the middleware but the stores directly in the
application. However for very simple scripts a middleware for sessions could be suf-
ficient.

This module does not implement methods or ways to check if a session is expired.
That should be done by a cronjob and storage specific. For example to prune unused
filesystem sessions one could check the modified time of the files. If sessions are stored
in the database the new() method should add an expiration timestamp for the session.

For better flexibility it’s recommended to not use the middleware but the store and
session object directly in the application dispatching:

session_store = FilesystemSessionStore()

def application(environ, start_response):
request = Request(environ)
sid = request.cookies.get('cookie_name')
if sid is None:

request.session = session_store.new()
else:

request.session = session_store.get(sid)
response = get_the_response_object(request)
if request.session.should_save:

session_store.save(request.session)
response.set_cookie('cookie_name', request.session.sid)

return response(environ, start_response)

190

Reference

class werkzeug.contrib.sessions.Session(data, sid, new=False)
Subclass of a dict that keeps track of direct object changes. Changes in mutable
structures are not tracked, for those you have to set modified to True by hand.

sid
The session ID as string.

new
True is the cookie was newly created, otherwise False

modified
Whenever an item on the cookie is set, this attribute is set to True. However
this does not track modifications inside mutable objects in the session:

>>> c = Session({}, sid='deadbeefbabe2c00ffee')
>>> c["foo"] = [1, 2, 3]
>>> c.modified
True
>>> c.modified = False
>>> c["foo"].append(4)
>>> c.modified
False

In that situation it has to be set to modified by hand so that should_save can
pick it up.

should_save
True if the session should be saved.

Changed in version 0.6: By default the session is now only saved if the
session is modified, not if it is new like it was before.

class werkzeug.contrib.sessions.SessionStore(session_class=None)
Baseclass for all session stores. The Werkzeug contrib module does not imple-
ment any useful stores besides the filesystem store, application developers are
encouraged to create their own stores.

Parameters session_class – The session class to use. Defaults to
Session.

delete(session)
Delete a session.

generate_key(salt=None)
Simple function that generates a new session key.

get(sid)
Get a session for this sid or a new session object. This method has to check
if the session key is valid and create a new session if that wasn’t the case.

is_valid_key(key)
Check if a key has the correct format.

191

new()
Generate a new session.

save(session)
Save a session.

save_if_modified(session)
Save if a session class wants an update.

class werkzeug.contrib.sessions.FilesystemSessionStore(path=None, file-
name_template=’werkzeug_%s.sess’,
session_class=None,
re-
new_missing=False,
mode=420)

Simple example session store that saves sessions on the filesystem. This store
works best on POSIX systems and Windows Vista / Windows Server 2008 and
newer.

Changed in version 0.6: renew_missing was added. Previously this was consid-
ered True, now the default changed to False and it can be explicitly deactivated.

Parameters

• path – the path to the folder used for storing the sessions. If
not provided the default temporary directory is used.

• filename_template – a string template used to give the session
a filename. %s is replaced with the session id.

• session_class – The session class to use. Defaults to Session.

• renew_missing – set to True if you want the store to give the
user a new sid if the session was not yet saved.

list()
Lists all sessions in the store.

New in version 0.6.

class werkzeug.contrib.sessions.SessionMiddleware(app, store,
cookie_name=’session_id’,
cookie_age=None,
cookie_expires=None,
cookie_path=’/’,
cookie_domain=None,
cookie_secure=None,
cookie_httponly=False,
envi-
ron_key=’werkzeug.session’)

A simple middleware that puts the session object of a store provided into the
WSGI environ. It automatically sets cookies and restores sessions.

However a middleware is not the preferred solution because it won’t be as fast
as sessions managed by the application itself and will put a key into the WSGI

192

environment only relevant for the application which is against the concept of
WSGI.

The cookie parameters are the same as for the dump_cookie() function just
prefixed with cookie_. Additionally max_age is called cookie_age and not
cookie_max_age because of backwards compatibility.

Secure Cookie

This module implements a cookie that is not alterable from the client because it adds
a checksum the server checks for. You can use it as session replacement if all you have
is a user id or something to mark a logged in user.

Keep in mind that the data is still readable from the client as a normal cookie is. How-
ever you don’t have to store and flush the sessions you have at the server.

Example usage:

>>> from werkzeug.contrib.securecookie import SecureCookie
>>> x = SecureCookie({"foo": 42, "baz": (1, 2, 3)}, "deadbeef")

Dumping into a string so that one can store it in a cookie:

>>> value = x.serialize()

Loading from that string again:

>>> x = SecureCookie.unserialize(value, "deadbeef")
>>> x["baz"]
(1, 2, 3)

If someone modifies the cookie and the checksum is wrong the unserialize method
will fail silently and return a new empty SecureCookie object.

Keep in mind that the values will be visible in the cookie so do not store data in a
cookie you don’t want the user to see.

Application Integration

If you are using the werkzeug request objects you could integrate the secure cookie
into your application like this:

from werkzeug.utils import cached_property
from werkzeug.wrappers import BaseRequest
from werkzeug.contrib.securecookie import SecureCookie

don't use this key but a different one; you could just use
os.urandom(20) to get something random
SECRET_KEY = '\xfa\xdd\xb8z\xae\xe0}4\x8b\xea'

193

class Request(BaseRequest):

@cached_property
def client_session(self):

data = self.cookies.get('session_data')
if not data:

return SecureCookie(secret_key=SECRET_KEY)
return SecureCookie.unserialize(data, SECRET_KEY)

def application(environ, start_response):
request = Request(environ)

get a response object here
response = ...

if request.client_session.should_save:
session_data = request.client_session.serialize()
response.set_cookie('session_data', session_data,

httponly=True)
return response(environ, start_response)

A less verbose integration can be achieved by using shorthand methods:

class Request(BaseRequest):

@cached_property
def client_session(self):

return SecureCookie.load_cookie(self, secret_key=COOKIE_SECRET)

def application(environ, start_response):
request = Request(environ)

get a response object here
response = ...

request.client_session.save_cookie(response)
return response(environ, start_response)

Security

The default implementation uses Pickle as this is the only module that used to be
available in the standard library when this module was created. If you have simplejson
available it’s strongly recommended to create a subclass and replace the serialization
method:

import json
from werkzeug.contrib.securecookie import SecureCookie

194

class JSONSecureCookie(SecureCookie):
serialization_method = json

The weakness of Pickle is that if someone gains access to the secret key the attacker
can not only modify the session but also execute arbitrary code on the server.

Reference

class werkzeug.contrib.securecookie.SecureCookie(data=None, se-
cret_key=None, new=True)

Represents a secure cookie. You can subclass this class and provide an alternative
mac method. The import thing is that the mac method is a function with a similar
interface to the hashlib. Required methods are update() and digest().

Example usage:

>>> x = SecureCookie({"foo": 42, "baz": (1, 2, 3)}, "deadbeef")
>>> x["foo"]
42
>>> x["baz"]
(1, 2, 3)
>>> x["blafasel"] = 23
>>> x.should_save
True

Parameters

• data – the initial data. Either a dict, list of tuples or None.

• secret_key – the secret key. If not set None or not specified it
has to be set before serialize() is called.

• new – The initial value of the new flag.

new
True if the cookie was newly created, otherwise False

modified
Whenever an item on the cookie is set, this attribute is set to True. However
this does not track modifications inside mutable objects in the cookie:

>>> c = SecureCookie()
>>> c["foo"] = [1, 2, 3]
>>> c.modified
True
>>> c.modified = False
>>> c["foo"].append(4)
>>> c.modified
False

195

In that situation it has to be set to modified by hand so that should_save can
pick it up.

static hash_method()
The hash method to use. This has to be a module with a new function or
a function that creates a hashlib object. Such as hashlib.md5 Subclasses can
override this attribute. The default hash is sha1. Make sure to wrap this in
staticmethod() if you store an arbitrary function there such as hashlib.sha1
which might be implemented as a function.

classmethod load_cookie(request, key=’session’, secret_key=None)
Loads a SecureCookie from a cookie in request. If the cookie is not set, a
new SecureCookie instanced is returned.

Parameters

• request – a request object that has a cookies attribute which is
a dict of all cookie values.

• key – the name of the cookie.

• secret_key – the secret key used to unquote the cookie. Al-
ways provide the value even though it has no default!

classmethod quote(value)
Quote the value for the cookie. This can be any object supported by
serialization_method.

Parameters value – the value to quote.

quote_base64 = True
if the contents should be base64 quoted. This can be disabled if the serial-
ization process returns cookie safe strings only.

save_cookie(response, key=’session’, expires=None, session_expires=None,
max_age=None, path=’/’, domain=None, secure=None,
httponly=False, force=False)

Saves the SecureCookie in a cookie on response object. All parameters that
are not described here are forwarded directly to set_cookie().

Parameters

• response – a response object that has a set_cookie() method.

• key – the name of the cookie.

• session_expires – the expiration date of the secure cookie
stored information. If this is not provided the cookie expires
date is used instead.

serialization_method = <module ‘pickle’ from ‘/usr/lib/python2.7/pickle.pyc’>
the module used for serialization. Unless overriden by subclasses the stan-
dard pickle module is used.

serialize(expires=None)
Serialize the secure cookie into a string.

196

If expires is provided, the session will be automatically invalidated after
expiration when you unseralize it. This provides better protection against
session cookie theft.

Parameters expires – an optional expiration date for the cookie (a
datetime.datetime object)

should_save
True if the session should be saved. By default this is only true for modified
cookies, not new.

classmethod unquote(value)
Unquote the value for the cookie. If unquoting does not work a
UnquoteError is raised.

Parameters value – the value to unquote.

classmethod unserialize(string, secret_key)
Load the secure cookie from a serialized string.

Parameters

• string – the cookie value to unserialize.

• secret_key – the secret key used to serialize the cookie.

Returns a new SecureCookie.

exception werkzeug.contrib.securecookie.UnquoteError
Internal exception used to signal failures on quoting.

Cache

The main problem with dynamic Web sites is, well, they’re dynamic. Each time a user
requests a page, the webserver executes a lot of code, queries the database, renders
templates until the visitor gets the page he sees.

This is a lot more expensive than just loading a file from the file system and sending it
to the visitor.

For most Web applications, this overhead isn’t a big deal but once it becomes, you will
be glad to have a cache system in place.

How Caching Works

Caching is pretty simple. Basically you have a cache object lurking around somewhere
that is connected to a remote cache or the file system or something else. When the
request comes in you check if the current page is already in the cache and if so, you’re
returning it from the cache. Otherwise you generate the page and put it into the cache.
(Or a fragment of the page, you don’t have to cache the full thing)

Here is a simple example of how to cache a sidebar for 5 minutes:

197

https://docs.python.org/dev/library/datetime.html#datetime.datetime

def get_sidebar(user):
identifier = 'sidebar_for/user%d' % user.id
value = cache.get(identifier)
if value is not None:

return value
value = generate_sidebar_for(user=user)
cache.set(identifier, value, timeout=60 * 5)
return value

Creating a Cache Object

To create a cache object you just import the cache system of your choice from the cache
module and instantiate it. Then you can start working with that object:

>>> from werkzeug.contrib.cache import SimpleCache
>>> c = SimpleCache()
>>> c.set("foo", "value")
>>> c.get("foo")
'value'
>>> c.get("missing") is None
True

Please keep in mind that you have to create the cache and put it somewhere you have
access to it (either as a module global you can import or you just put it into your WSGI
application).

Cache System API

class werkzeug.contrib.cache.BaseCache(default_timeout=300)
Baseclass for the cache systems. All the cache systems implement this API or a
superset of it.

Parameters default_timeout – the default timeout (in seconds) that is
used if no timeout is specified on set(). A timeout of 0 indicates
that the cache never expires.

add(key, value, timeout=None)
Works like set() but does not overwrite the values of already existing keys.

Parameters

• key – the key to set

• value – the value for the key

• timeout – the cache timeout for the key in seconds (if not
specified, it uses the default timeout). A timeout of 0 idicates
that the cache never expires.

Returns Same as set(), but also False for already existing keys.

198

Return type boolean

clear()
Clears the cache. Keep in mind that not all caches support completely clear-
ing the cache.

Returns Whether the cache has been cleared.

Return type boolean

dec(key, delta=1)
Decrements the value of a key by delta. If the key does not yet exist it is
initialized with -delta.

For supporting caches this is an atomic operation.

Parameters

• key – the key to increment.

• delta – the delta to subtract.

Returns The new value or None for backend errors.

delete(key)
Delete key from the cache.

Parameters key – the key to delete.

Returns Whether the key existed and has been deleted.

Return type boolean

delete_many(*keys)
Deletes multiple keys at once.

Parameters keys – The function accepts multiple keys as positional
arguments.

Returns Whether all given keys have been deleted.

Return type boolean

get(key)
Look up key in the cache and return the value for it.

Parameters key – the key to be looked up.

Returns The value if it exists and is readable, else None.

get_dict(*keys)
Like get_many() but return a dict:

d = cache.get_dict("foo", "bar")
foo = d["foo"]
bar = d["bar"]

199

Parameters keys – The function accepts multiple keys as positional
arguments.

get_many(*keys)
Returns a list of values for the given keys. For each key a item in the list is
created:

foo, bar = cache.get_many("foo", "bar")

Has the same error handling as get().

Parameters keys – The function accepts multiple keys as positional
arguments.

has(key)
Checks if a key exists in the cache without returning it. This is a cheap
operation that bypasses loading the actual data on the backend.

This method is optional and may not be implemented on all caches.

Parameters key – the key to check

inc(key, delta=1)
Increments the value of a key by delta. If the key does not yet exist it is
initialized with delta.

For supporting caches this is an atomic operation.

Parameters

• key – the key to increment.

• delta – the delta to add.

Returns The new value or None for backend errors.

set(key, value, timeout=None)
Add a new key/value to the cache (overwrites value, if key already exists
in the cache).

Parameters

• key – the key to set

• value – the value for the key

• timeout – the cache timeout for the key in seconds (if not
specified, it uses the default timeout). A timeout of 0 idicates
that the cache never expires.

Returns True if key has been updated, False for backend er-
rors. Pickling errors, however, will raise a subclass of pickle.
PickleError.

Return type boolean

200

set_many(mapping, timeout=None)
Sets multiple keys and values from a mapping.

Parameters

• mapping – a mapping with the keys/values to set.

• timeout – the cache timeout for the key in seconds (if not
specified, it uses the default timeout). A timeout of 0 idicates
that the cache never expires.

Returns Whether all given keys have been set.

Return type boolean

Cache Systems

class werkzeug.contrib.cache.NullCache(default_timeout=300)
A cache that doesn’t cache. This can be useful for unit testing.

Parameters default_timeout – a dummy parameter that is ignored but
exists for API compatibility with other caches.

class werkzeug.contrib.cache.SimpleCache(threshold=500, default_timeout=300)
Simple memory cache for single process environments. This class exists mainly
for the development server and is not 100% thread safe. It tries to use as many
atomic operations as possible and no locks for simplicity but it could happen
under heavy load that keys are added multiple times.

Parameters

• threshold – the maximum number of items the cache stores
before it starts deleting some.

• default_timeout – the default timeout that is used if no time-
out is specified on set(). A timeout of 0 indicates that the
cache never expires.

class werkzeug.contrib.cache.MemcachedCache(servers=None, de-
fault_timeout=300,
key_prefix=None)

A cache that uses memcached as backend.

The first argument can either be an object that resembles the API of a memcache.
Client or a tuple/list of server addresses. In the event that a tuple/list is passed,
Werkzeug tries to import the best available memcache library.

This cache looks into the following packages/modules to find bindings for mem-
cached:

•pylibmc

•google.appengine.api.memcached

•memcached

201

•libmc

Implementation notes: This cache backend works around some limitations in
memcached to simplify the interface. For example unicode keys are encoded to
utf-8 on the fly. Methods such as get_dict() return the keys in the same format
as passed. Furthermore all get methods silently ignore key errors to not cause
problems when untrusted user data is passed to the get methods which is often
the case in web applications.

Parameters

• servers – a list or tuple of server addresses or alternatively a
memcache.Client or a compatible client.

• default_timeout – the default timeout that is used if no time-
out is specified on set(). A timeout of 0 indicates taht the
cache never expires.

• key_prefix – a prefix that is added before all keys. This makes
it possible to use the same memcached server for different ap-
plications. Keep in mind that clear() will also clear keys with
a different prefix.

class werkzeug.contrib.cache.GAEMemcachedCache
This class is deprecated in favour of MemcachedCache which now supports Google
Appengine as well.

Changed in version 0.8: Deprecated in favour of MemcachedCache.

class werkzeug.contrib.cache.RedisCache(host=’localhost’, port=6379,
password=None, db=0, de-
fault_timeout=300, key_prefix=None,
**kwargs)

Uses the Redis key-value store as a cache backend.

The first argument can be either a string denoting address of the Redis server or
an object resembling an instance of a redis.Redis class.

Note: Python Redis API already takes care of encoding unicode strings on the
fly.

New in version 0.7.

New in version 0.8: key_prefix was added.

Changed in version 0.8: This cache backend now properly serializes objects.

Changed in version 0.8.3: This cache backend now supports password authenti-
cation.

Changed in version 0.10: **kwargs is now passed to the redis object.

Parameters

• host – address of the Redis server or an object which API is
compatible with the official Python Redis client (redis-py).

202

• port – port number on which Redis server listens for connec-
tions.

• password – password authentication for the Redis server.

• db – db (zero-based numeric index) on Redis Server to connect.

• default_timeout – the default timeout that is used if no time-
out is specified on set(). A timeout of 0 indicates that the
cache never expires.

• key_prefix – A prefix that should be added to all keys.

Any additional keyword arguments will be passed to redis.Redis.

class werkzeug.contrib.cache.FileSystemCache(cache_dir, threshold=500, de-
fault_timeout=300, mode=384)

A cache that stores the items on the file system. This cache depends on being the
only user of the cache_dir. Make absolutely sure that nobody but this cache stores
files there or otherwise the cache will randomly delete files therein.

Parameters

• cache_dir – the directory where cache files are stored.

• threshold – the maximum number of items the cache stores
before it starts deleting some.

• default_timeout – the default timeout that is used if no time-
out is specified on set(). A timeout of 0 indicates that the
cache never expires.

• mode – the file mode wanted for the cache files, default 0600

class werkzeug.contrib.cache.UWSGICache(default_timeout=300, cache=’‘)
Implements the cache using uWSGI’s caching framework.

Note: This class cannot be used when running under PyPy, because the uWSGI
API implementation for PyPy is lacking the needed functionality.

Parameters

• default_timeout – The default timeout in seconds.

• cache – The name of the caching instance to connect to, for ex-
ample: mycache@localhost:3031, defaults to an empty string,
which means uWSGI will cache in the local instance. If the
cache is in the same instance as the werkzeug app, you only
have to provide the name of the cache.

203

mailto:mycache@localhost

Extra Wrappers

Extra wrappers or mixins contributed by the community. These wrappers can be
mixed in into request objects to add extra functionality.

Example:

from werkzeug.wrappers import Request as RequestBase
from werkzeug.contrib.wrappers import JSONRequestMixin

class Request(RequestBase, JSONRequestMixin):
pass

Afterwards this request object provides the extra functionality of the
JSONRequestMixin.

class werkzeug.contrib.wrappers.JSONRequestMixin
Add json method to a request object. This will parse the input data through
simplejson if possible.

BadRequest will be raised if the content-type is not json or if the data itself cannot
be parsed as json.

json
Get the result of simplejson.loads if possible.

class werkzeug.contrib.wrappers.ProtobufRequestMixin
Add protobuf parsing method to a request object. This will parse the input data
through protobuf if possible.

BadRequest will be raised if the content-type is not protobuf or if the data itself
cannot be parsed property.

parse_protobuf(proto_type)
Parse the data into an instance of proto_type.

protobuf_check_initialization = True
by default the ProtobufRequestMixin will raise a BadRequest if the object is
not initialized. You can bypass that check by setting this attribute to False.

class werkzeug.contrib.wrappers.RoutingArgsRequestMixin
This request mixin adds support for the wsgiorg routing args specification.

routing_args
The positional URL arguments as tuple.

routing_vars
The keyword URL arguments as dict.

class werkzeug.contrib.wrappers.ReverseSlashBehaviorRequestMixin
This mixin reverses the trailing slash behavior of script_root and path. This
makes it possible to use urljoin() directly on the paths.

204

http://code.google.com/p/protobuf/
https://wsgi.readthedocs.io/en/latest/specifications/routing_args.html

Because it changes the behavior or Request this class has to be mixed in before the
actual request class:

class MyRequest(ReverseSlashBehaviorRequestMixin, Request):
pass

This example shows the differences (for an application mounted on /application
and the request going to /application/foo/bar):

normal behavior reverse behavior
script_root /application /application/
path /foo/bar foo/bar

path
Requested path as unicode. This works a bit like the regular path info in the
WSGI environment but will not include a leading slash.

script_root
The root path of the script includling a trailing slash.

class werkzeug.contrib.wrappers.DynamicCharsetRequestMixin
“If this mixin is mixed into a request class it will provide a dynamic charset at-
tribute. This means that if the charset is transmitted in the content type headers
it’s used from there.

Because it changes the behavior or Request this class has to be mixed in before the
actual request class:

class MyRequest(DynamicCharsetRequestMixin, Request):
pass

By default the request object assumes that the URL charset is the same as the
data charset. If the charset varies on each request based on the transmitted data
it’s not a good idea to let the URLs change based on that. Most browsers assume
either utf-8 or latin1 for the URLs if they have troubles figuring out. It’s strongly
recommended to set the URL charset to utf-8:

class MyRequest(DynamicCharsetRequestMixin, Request):
url_charset = 'utf-8'

New in version 0.6.

charset
The charset from the content type.

default_charset = ‘latin1’
the default charset that is assumed if the content type header is missing or
does not contain a charset parameter. The default is latin1 which is what
HTTP specifies as default charset. You may however want to set this to
utf-8 to better support browsers that do not transmit a charset for incoming
data.

unknown_charset(charset)

205

Called if a charset was provided but is not supported by the Python codecs
module. By default latin1 is assumed then to not lose any information, you
may override this method to change the behavior.

Parameters charset – the charset that was not found.

Returns the replacement charset.

class werkzeug.contrib.wrappers.DynamicCharsetResponseMixin
If this mixin is mixed into a response class it will provide a dynamic charset at-
tribute. This means that if the charset is looked up and stored in the Content-Type
header and updates itself automatically. This also means a small performance
hit but can be useful if you’re working with different charsets on responses.

Because the charset attribute is no a property at class-level, the default value is
stored in default_charset.

Because it changes the behavior or Response this class has to be mixed in before
the actual response class:

class MyResponse(DynamicCharsetResponseMixin, Response):
pass

New in version 0.6.

charset
The charset for the response. It’s stored inside the Content-Type header as
a parameter.

default_charset = ‘utf-8’
the default charset.

Iter IO

This module implements a IterIO that converts an iterator into a stream object and
the other way round. Converting streams into iterators requires the greenlet module.

To convert an iterator into a stream all you have to do is to pass it directly to the IterIO
constructor. In this example we pass it a newly created generator:

def foo():
yield "something\n"
yield "otherthings"

stream = IterIO(foo())
print stream.read() # read the whole iterator

The other way round works a bit different because we have to ensure that the code
execution doesn’t take place yet. An IterIO call with a callable as first argument does
two things. The function itself is passed an IterIO stream it can feed. The object
returned by the IterIO constructor on the other hand is not an stream object but an
iterator:

206

https://github.com/python-greenlet/greenlet

def foo(stream):
stream.write("some")
stream.write("thing")
stream.flush()
stream.write("otherthing")

iterator = IterIO(foo)
print iterator.next() # prints something
print iterator.next() # prints otherthing
iterator.next() # raises StopIteration

class werkzeug.contrib.iterio.IterIO
Instances of this object implement an interface compatible with the standard
Python file object. Streams are either read-only or write-only depending on
how the object is created.

If the first argument is an iterable a file like object is returned that returns the
contents of the iterable. In case the iterable is empty read operations will return
the sentinel value.

If the first argument is a callable then the stream object will be created and passed
to that function. The caller itself however will not receive a stream but an iter-
able. The function will be be executed step by step as something iterates over
the returned iterable. Each call to flush() will create an item for the iterable.
If flush() is called without any writes in-between the sentinel value will be
yielded.

Note for Python 3: due to the incompatible interface of bytes and streams you
should set the sentinel value explicitly to an empty bytestring (b'') if you are
expecting to deal with bytes as otherwise the end of the stream is marked with
the wrong sentinel value.

New in version 0.9: sentinel parameter was added.

Fixers

New in version 0.5.

This module includes various helpers that fix bugs in web servers. They may be nec-
essary for some versions of a buggy web server but not others. We try to stay updated
with the status of the bugs as good as possible but you have to make sure whether
they fix the problem you encounter.

If you notice bugs in webservers not fixed in this module consider contributing a
patch.

class werkzeug.contrib.fixers.CGIRootFix(app, app_root=’/’)
Wrap the application in this middleware if you are using FastCGI or CGI and
you have problems with your app root being set to the cgi script’s path instead
of the path users are going to visit

207

Changed in version 0.9: Added app_root parameter and renamed from Lighttpd-
CGIRootFix.

Parameters

• app – the WSGI application

• app_root – Defaulting to '/', you can set this to something else
if your app is mounted somewhere else.

class werkzeug.contrib.fixers.PathInfoFromRequestUriFix(app)
On windows environment variables are limited to the system charset which
makes it impossible to store the PATH_INFO variable in the environment with-
out loss of information on some systems.

This is for example a problem for CGI scripts on a Windows Apache.

This fixer works by recreating the PATH_INFO from REQUEST_URI, RE-
QUEST_URL, or UNENCODED_URL (whatever is available). Thus the fix can
only be applied if the webserver supports either of these variables.

Parameters app – the WSGI application

class werkzeug.contrib.fixers.ProxyFix(app, num_proxies=1)
This middleware can be applied to add HTTP proxy support to an application
that was not designed with HTTP proxies in mind. It sets REMOTE_ADDR,
HTTP_HOST from X-Forwarded headers. While Werkzeug-based applications
already can use werkzeug.wsgi.get_host() to retrieve the current host even if
behind proxy setups, this middleware can be used for applications which access
the WSGI environment directly.

If you have more than one proxy server in front of your app, set num_proxies
accordingly.

Do not use this middleware in non-proxy setups for security reasons.

The original values of REMOTE_ADDR and HTTP_HOST are stored
in the WSGI environment as werkzeug.proxy_fix.orig_remote_addr and
werkzeug.proxy_fix.orig_http_host.

Parameters

• app – the WSGI application

• num_proxies – the number of proxy servers in front of the app.

get_remote_addr(forwarded_for)
Selects the new remote addr from the given list of ips in X-Forwarded-For.
By default it picks the one that the num_proxies proxy server provides. Be-
fore 0.9 it would always pick the first.

New in version 0.8.

class werkzeug.contrib.fixers.HeaderRewriterFix(app, remove_headers=None,
add_headers=None)

This middleware can remove response headers and add others. This is for exam-

208

ple useful to remove the Date header from responses if you are using a server that
adds that header, no matter if it’s present or not or to add X-Powered-By headers:

app = HeaderRewriterFix(app, remove_headers=['Date'],
add_headers=[('X-Powered-By', 'WSGI')])

Parameters

• app – the WSGI application

• remove_headers – a sequence of header keys that should be re-
moved.

• add_headers – a sequence of (key, value) tuples that should
be added.

class werkzeug.contrib.fixers.InternetExplorerFix(app, fix_vary=True,
fix_attach=True)

This middleware fixes a couple of bugs with Microsoft Internet Explorer. Cur-
rently the following fixes are applied:

•removing of Vary headers for unsupported mimetypes which causes trou-
bles with caching. Can be disabled by passing fix_vary=False to the con-
structor. see: http://support.microsoft.com/kb/824847/en-us

•removes offending headers to work around caching bugs in Internet
Explorer if Content-Disposition is set. Can be disabled by passing
fix_attach=False to the constructor.

If it does not detect affected Internet Explorer versions it won’t touch the request
/ response.

WSGI Application Profiler

This module provides a simple WSGI profiler middleware for finding bottlenecks in
web application. It uses the profile or cProfile module to do the profiling and writes
the stats to the stream provided (defaults to stderr).

Example usage:

from werkzeug.contrib.profiler import ProfilerMiddleware
app = ProfilerMiddleware(app)

class werkzeug.contrib.profiler.MergeStream(*streams)
An object that redirects write calls to multiple streams. Use this to log to both
sys.stdout and a file:

f = open('profiler.log', 'w')
stream = MergeStream(sys.stdout, f)
profiler = ProfilerMiddleware(app, stream)

209

http://support.microsoft.com/kb/824847/en-us
https://docs.python.org/dev/library/profile.html#module-profile
https://docs.python.org/dev/library/profile.html#module-cProfile

class werkzeug.contrib.profiler.ProfilerMiddleware(app, stream=None,
sort_by=(‘time’, ‘calls’),
restrictions=(), pro-
file_dir=None)

Simple profiler middleware. Wraps a WSGI application and profiles a request.
This intentionally buffers the response so that timings are more exact.

By giving the profile_dir argument, pstat.Stats files are saved to that directory, one
file per request. Without it, a summary is printed to stream instead.

For the exact meaning of sort_by and restrictions consult the profile documenta-
tion.

New in version 0.9: Added support for restrictions and profile_dir.

Parameters

• app – the WSGI application to profile.

• stream – the stream for the profiled stats. defaults to stderr.

• sort_by – a tuple of columns to sort the result by.

• restrictions – a tuple of profiling strictions, not used if dump-
ing to profile_dir.

• profile_dir – directory name to save pstat files

werkzeug.contrib.profiler.make_action(app_factory, hostname=’localhost’,
port=5000, threaded=False, processes=1,
stream=None, sort_by=(‘time’, ‘calls’),
restrictions=())

Return a new callback for werkzeug.script that starts a local server with the
profiler enabled.

from werkzeug.contrib import profiler
action_profile = profiler.make_action(make_app)

Lint Validation Middleware

New in version 0.5.

This module provides a middleware that performs sanity checks of the WSGI appli-
cation. It checks that PEP 333 is properly implemented and warns on some common
HTTP errors such as non-empty responses for 304 status codes.

This module provides a middleware, the LintMiddleware. Wrap your application with
it and it will warn about common problems with WSGI and HTTP while your appli-
cation is running.

It’s strongly recommended to use it during development.

210

https://docs.python.org/dev/library/profile.html#module-profile
https://www.python.org/dev/peps/pep-0333

class werkzeug.contrib.lint.LintMiddleware(app)
This middleware wraps an application and warns on common errors. Among
other thing it currently checks for the following problems:

•invalid status codes

•non-bytestrings sent to the WSGI server

•strings returned from the WSGI application

•non-empty conditional responses

•unquoted etags

•relative URLs in the Location header

•unsafe calls to wsgi.input

•unclosed iterators

Detected errors are emitted using the standard Python warnings system and usu-
ally end up on stderr.

from werkzeug.contrib.lint import LintMiddleware
app = LintMiddleware(app)

Parameters app – the application to wrap

211

https://docs.python.org/dev/library/warnings.html#module-warnings

212

Part VI

ADDITIONAL INFORMATION

213

214

CHAPTER 23

Important Terms

This page covers important terms used in the documentation and Werkzeug itself.

WSGI

WSGI a specification for Python web applications Werkzeug follows. It was specified
in the PEP 333 and is widely supported. Unlike previous solutions it guarantees that
web applications, servers and utilities can work together.

Response Object

For Werkzeug, a response object is an object that works like a WSGI application but
does not do any request processing. Usually you have a view function or controller
method that processes the request and assembles a response object.

A response object is not necessarily the BaseResponse object or a subclass thereof.

For example Pylons/webob provide a very similar response class that can be used as
well (webob.Response).

View Function

Often people speak of MVC (Model, View, Controller) when developing web applica-
tions. However, the Django framework coined MTV (Model, Template, View) which

215

https://www.python.org/dev/peps/pep-0333

basically means the same but reduces the concept to the data model, a function that
processes data from the request and the database and renders a template.

Werkzeug itself does not tell you how you should develop applications, but the doc-
umentation often speaks of view functions that work roughly the same. The idea of a
view function is that it’s called with a request object (and optionally some parameters
from an URL rule) and returns a response object.

216

CHAPTER 24

Unicode

Since early Python 2 days unicode was part of all default Python builds. It allows
developers to write applications that deal with non-ASCII characters in a straightfor-
ward way. But working with unicode requires a basic knowledge about that matter,
especially when working with libraries that do not support it.

Werkzeug uses unicode internally everywhere text data is assumed, even if the HTTP
standard is not unicode aware as it. Basically all incoming data is decoded from the
charset specified (per default utf-8) so that you don’t operate on bytestrings any more.
Outgoing unicode data is then encoded into the target charset again.

Unicode in Python

In Python 2 there are two basic string types: str and unicode. str may carry encoded
unicode data but it’s always represented in bytes whereas the unicode type does not
contain bytes but charpoints. What does this mean? Imagine you have the German
Umlaut ö. In ASCII you cannot represent that character, but in the latin-1 and utf-8
character sets you can represent it, but they look differently when encoded:

>>> u'ö'.encode('latin1')
'\xf6'
>>> u'ö'.encode('utf-8')
'\xc3\xb6'

So an ö might look totally different depending on the encoding which makes it hard to
work with it. The solution is using the unicode type (as we did above, note the u prefix
before the string). The unicode type does not store the bytes for ö but the information,
that this is a LATIN SMALL LETTER O WITH DIAERESIS.

217

Doing len(u'ö') will always give us the expected “1” but len('ö') might give differ-
ent results depending on the encoding of 'ö'.

Unicode in HTTP

The problem with unicode is that HTTP does not know what unicode is. HTTP is
limited to bytes but this is not a big problem as Werkzeug decodes and encodes for
us automatically all incoming and outgoing data. Basically what this means is that
data sent from the browser to the web application is per default decoded from an utf-8
bytestring into a unicode string. Data sent from the application back to the browser
that is not yet a bytestring is then encoded back to utf-8.

Usually this “just works” and we don’t have to worry about it, but there are situations
where this behavior is problematic. For example the Python 2 IO layer is not unicode
aware. This means that whenever you work with data from the file system you have
to properly decode it. The correct way to load a text file from the file system looks like
this:

f = file('/path/to/the_file.txt', 'r')
try:

text = f.decode('utf-8') # assuming the file is utf-8 encoded
finally:

f.close()

There is also the codecs module which provides an open function that decodes auto-
matically from the given encoding.

Error Handling

With Werkzeug 0.3 onwards you can further control the way Werkzeug works with
unicode. In the past Werkzeug ignored encoding errors silently on incoming data.
This decision was made to avoid internal server errors if the user tampered with the
submitted data. However there are situations where you want to abort with a 400 BAD
REQUEST instead of silently ignoring the error.

All the functions that do internal decoding now accept an errors keyword argument
that behaves like the errors parameter of the builtin string method decode. The follow-
ing values are possible:

ignore This is the default behavior and tells the codec to ignore characters that it
doesn’t understand silently.

replace The codec will replace unknown characters with a replacement character
(U+FFFD REPLACEMENT CHARACTER)

strict Raise an exception if decoding fails.

218

Unlike the regular python decoding Werkzeug does not raise an UnicodeDecodeError
if the decoding failed but an HTTPUnicodeError which is a direct subclass of UnicodeEr-
ror and the BadRequest HTTP exception. The reason is that if this exception is not
caught by the application but a catch-all for HTTP exceptions exists a default 400 BAD
REQUEST error page is displayed.

There is additional error handling available which is a Werkzeug extension to the reg-
ular codec error handling which is called fallback. Often you want to use utf-8 but
support latin1 as legacy encoding too if decoding failed. For this case you can use the
fallback error handling. For example you can specify 'fallback:iso-8859-15' to tell
Werkzeug it should try with iso-8859-15 if utf-8 failed. If this decoding fails too (which
should not happen for most legacy charsets such as iso-8859-15) the error is silently
ignored as if the error handling was ignore.

Further details are available as part of the API documentation of the concrete imple-
mentations of the functions or classes working with unicode.

Request and Response Objects

As request and response objects usually are the central entities of Werkzeug powered
applications you can change the default encoding Werkzeug operates on by subclass-
ing these two classes. For example you can easily set the application to utf-7 and strict
error handling:

from werkzeug.wrappers import BaseRequest, BaseResponse

class Request(BaseRequest):
charset = 'utf-7'
encoding_errors = 'strict'

class Response(BaseResponse):
charset = 'utf-7'

Keep in mind that the error handling is only customizable for all decoding but not en-
coding. If Werkzeug encounters an encoding error it will raise a UnicodeEncodeError.
It’s your responsibility to not create data that is not present in the target charset (a non
issue with all unicode encodings such as utf-8).

The Filesystem

Changed in version 0.11.

Up until version 0.11, Werkzeug used Python’s stdlib functionality to detect the filesys-
tem encoding. However, several bug reports against Werkzeug have shown that the
value of sys.getfilesystemencoding() cannot be trusted under traditional UNIX sys-
tems. The usual problems come from misconfigured systems, where LANG and simi-
lar environment variables are not set. In such cases, Python would default to ASCII

219

https://docs.python.org/dev/library/exceptions.html#UnicodeDecodeError
https://docs.python.org/dev/library/exceptions.html#UnicodeEncodeError
https://docs.python.org/dev/library/sys.html#sys.getfilesystemencoding

as filesystem encoding, a very conservative default that is usually wrong and causes
more problems than it avoids.

Therefore Werkzeug will force the filesystem encoding to UTF-8 and issue a
warning whenever it detects that it is running under BSD or Linux, and sys.
getfilesystemencoding() is returning an ASCII encoding.

See also werkzeug.filesystem.

220

https://docs.python.org/dev/library/sys.html#sys.getfilesystemencoding
https://docs.python.org/dev/library/sys.html#sys.getfilesystemencoding

CHAPTER 25

Dealing with Request Data

The most important rule about web development is “Do not trust the user”. This
is especially true for incoming request data on the input stream. With WSGI this is
actually a bit harder than you would expect. Because of that Werkzeug wraps the
request stream for you to save you from the most prominent problems with it.

Missing EOF Marker on Input Stream

The input stream has no end-of-file marker. If you would call the read() method
on the wsgi.input stream you would cause your application to hang on conforming
servers. This is actually intentional however painful. Werkzeug solves that problem
by wrapping the input stream in a special LimitedStream. The input stream is exposed
on the request objects as stream. This one is either an empty stream (if the form data
was parsed) or a limited stream with the contents of the input stream.

When does Werkzeug Parse?

Werkzeug parses the incoming data under the following situations:

• you access either form, files, or stream and the request method was POST or
PUT.

• if you call parse_form_data().

These calls are not interchangeable. If you invoke parse_form_data() you must not
use the request object or at least not the attributes that trigger the parsing process.

221

This is also true if you read from the wsgi.input stream before the parsing.

General rule: Leave the WSGI input stream alone. Especially in WSGI middlewares.
Use either the parsing functions or the request object. Do not mix multiple WSGI
utility libraries for form data parsing or anything else that works on the input stream.

How does it Parse?

The standard Werkzeug parsing behavior handles three cases:

• input content type was multipart/form-data. In this situation the stream will be
empty and form will contain the regular POST / PUT data, files will contain
the uploaded files as FileStorage objects.

• input content type was application/x-www-form-urlencoded. Then the stream will
be empty and form will contain the regular POST / PUT data and files will be
empty.

• the input content type was neither of them, stream points to a LimitedStream
with the input data for further processing.

Special note on the get_data method: Calling this loads the full request data into mem-
ory. This is only safe to do if the max_content_length is set. Also you can either read
the stream or call get_data().

Limiting Request Data

To avoid being the victim of a DDOS attack you can set the maximum accepted con-
tent length and request field sizes. The BaseRequest class has two attributes for that:
max_content_length and max_form_memory_size.

The first one can be used to limit the total content length. For example by setting it to
1024 * 1024 * 16 the request won’t accept more than 16MB of transmitted data.

Because certain data can’t be moved to the hard disk (regular post data) whereas tem-
porary files can, there is a second limit you can set. The max_form_memory_size limits
the size of POST transmitted form data. By setting it to 1024 * 1024 * 2 you can make
sure that all in memory-stored fields are not more than 2MB in size.

This however does not affect in-memory stored files if the stream_factory used returns
a in-memory file.

How to extend Parsing?

Modern web applications transmit a lot more than multipart form data or url encoded
data. Extending the parsing capabilities by subclassing the BaseRequest is simple. The
following example implements parsing for incoming JSON data:

222

from werkzeug.utils import cached_property
from werkzeug.wrappers import Request
from simplejson import loads

class JSONRequest(Request):
accept up to 4MB of transmitted data.
max_content_length = 1024 * 1024 * 4

@cached_property
def json(self):

if self.headers.get('content-type') == 'application/json':
return loads(self.data)

223

224

CHAPTER 26

Werkzeug Changelog

This file lists all major changes in Werkzeug over the versions. For API breaking
changes have a look at API Changes, they are listed there in detail.

Werkzeug Changelog

Version 0.13

yet to be released

• Raise TypeError when port is not an integer.

• Fully deprecate werkzeug.script. Use click (http://click.pocoo.org) instead.

• response.age is parsed as a timedelta. Previously, it was incorrectly treated as
a datetime. The header value is an integer number of seconds, not a date string.
(#414)

• Fix a bug in TypeConversionDict where errors are not propagated when using
the converter. (#1102)

• Authorization.qop is a string instead of a set, to comply with RFC 2617. (#984)

• An exception is raised when an encoded cookie is larger than, by default, 4093
bytes. Browsers may silently ignore cookies larger than this. BaseResponse has a
new attribute max_cookie_size and dump_cookie has a new argument max_size
to configure this. (#780, #1109)

225

http://click.pocoo.org
https://github.com/pallets/werkzeug/pull/780
https://github.com/pallets/werkzeug/pull/1109

Version 0.12.1

Released on March 15th 2017

• Fix crash of reloader (used on debug mode) on Windows. (OSError: [WinError
10038]). See pull request #1081

• Partially revert change to class hierarchy of Headers. See #1084.

Version 0.12

Released on March 10th 2017

• Spit out big deprecation warnings for werkzeug.script

• Use inspect.getfullargspec internally when available as inspect.getargspec is gone in
3.6

• Added support for status code 451 and 423

• Improved the build error suggestions. In particular only if someone stringifies
the error will the suggestions be calculated.

• Added support for uWSGI’s caching backend.

• Fix a bug where iterating over a FileStorage would result in an infinite loop.

• Datastructures now inherit from the relevant baseclasses from the collections
module in the stdlib. See #794.

• Add support for recognizing NetBSD, OpenBSD, FreeBSD, DragonFlyBSD plat-
forms in the user agent string.

• Recognize SeaMonkey browser name and version correctly

• Recognize Baiduspider, and bingbot user agents

• If LocalProxy‘s wrapped object is a function, refer to it with __wrapped__ at-
tribute.

• The defaults of generate_password_hash have been changed to more secure ones,
see pull request #753.

• Add support for encoding in options header parsing, see pull request #933.

• test.Client now properly handles Location headers with relative URLs, see pull
request #879.

• When HTTPException is raised, it now prints the description, for easier debug-
ging.

• Werkzeug’s dict-like datastructures now have view-methods under Python 2, see
pull request #968.

• Fix a bug in MultiPartParser when no stream_factory was provided during
initialization, see pull request #973.

226

• Disable autocorrect and spellchecker in the debugger middleware’s Python
prompt, see pull request #994.

• Don’t redirect to slash route when method doesn’t match, see pull request #907.

• Fix a bug when using SharedDataMiddleware with frozen packages, see pull re-
quest #959.

• Range header parsing function fixed for invalid values #974.

• Add support for byte Range Requests, see pull request #978.

• Use modern cryptographic defaults in the dev servers #1004.

• the post() method of the test client now accept file object through the data pa-
rameter.

• Color run_simple’s terminal output based on HTTP codes #1013.

• Fix self-XSS in debugger console, see #1031.

• Fix IPython 5.x shell support, see #1033.

Version 0.11.16

• werkzeug.serving: set CONTENT_TYPE / CONTENT_LENGTH if only they’re
provided by the client

• werkzeug.serving: Fix crash of reloader when using python -m werkzeug.serving.

Version 0.11.15

Released on December 30th 2016.

• Bugfix for the bugfix in the previous release.

Version 0.11.14

Released on December 30th 2016.

• Check if platform can fork before importing ForkingMixIn, raise exception when
creating ForkingWSGIServer on such a platform, see PR #999.

Version 0.11.13

Released on December 26th 2016.

• Correct fix for the reloader issuer on certain Windows installations.

227

Version 0.11.12

Released on December 26th 2016.

• Fix more bugs in multidicts regarding empty lists. See #1000.

• Add some docstrings to some EnvironBuilder properties that were previously un-
intentionally missing.

• Added a workaround for the reloader on windows.

Version 0.11.11

Released on August 31st 2016.

• Fix JSONRequestMixin for Python3. See #731

• Fix broken string handling in test client when passing integers. See #852

• Fix a bug in parse_options_header where an invalid content type starting with
comma or semi-colon would result in an invalid return value, see issue #995.

• Fix a bug in multidicts when passing empty lists as values, see issue #979.

• Fix a security issue that allows XSS on the Werkzeug debugger. See #1001.

Version 0.11.10

Released on May 24th 2016.

• Fixed a bug that occurs when running on Python 2.6 and using a broken locale.
See pull request #912.

• Fixed a crash when running the debugger on Google App Engine. See issue #925.

• Fixed an issue with multipart parsing that could cause memory exhaustion.

Version 0.11.9

Released on April 24th 2016.

• Corrected an issue that caused the debugger not to use the machine GUID on
POSIX systems.

• Corrected a Unicode error on Python 3 for the debugger’s PIN usage.

• Corrected the timestamp verification in the pin debug code. Without this fix the
pin was remembered for too long.

228

Version 0.11.8

Released on April 15th 2016.

• fixed a problem with the machine GUID detection code on OS X on Python 3.

Version 0.11.7

Released on April 14th 2016.

• fixed a regression on Python 3 for the debugger.

Version 0.11.6

Released on April 14th 2016.

• werkzeug.serving: Still show the client address on bad requests.

• improved the PIN based protection for the debugger to make it harder to brute
force via trying cookies. Please keep in mind that the debugger is not intended for
running on production environments

• increased the pin timeout to a week to make it less annoying for people which
should decrease the chance that users disable the pin check entirely.

• werkzeug.serving: Fix broken HTTP_HOST when path starts with double slash.

Version 0.11.5

Released on March 22nd 2016.

• werkzeug.serving: Fix crash when attempting SSL connection to HTTP server.

Version 0.11.4

Released on February 14th 2016.

• Fixed werkzeug.serving not working from -m flag.

• Fixed incorrect weak etag handling.

Version 0.11.3

Released on December 20th 2015.

• Fixed an issue with copy operations not working against proxies.

• Changed the logging operations of the development server to correctly log where
the server is running in all situations again.

229

• Fixed another regression with SSL wrapping similar to the fix in 0.11.2 but for a
different code path.

Version 0.11.2

Released on November 12th 2015.

• Fix inheritable sockets on Windows on Python 3.

• Fixed an issue with the forking server not starting any longer.

• Fixed SSL wrapping on platforms that supported opening sockets by file descrip-
tor.

• No longer log from the watchdog reloader.

• Unicode errors in hosts are now better caught or converted into bad request er-
rors.

Version 0.11.1

Released on November 10th 2015.

• Fixed a regression on Python 3 in the debugger.

Version 0.11

Released on November 8th 2015, codename Gleisbaumaschine.

• Added reloader_paths option to run_simple and other functions in werkzeug.
serving. This allows the user to completely override the Python module watch-
ing of Werkzeug with custom paths.

• Many custom cached properties of Werkzeug’s classes are now subclasses of
Python’s property type (issue #616).

• bind_to_environ now doesn’t differentiate between implicit and explicit default
port numbers in HTTP_HOST (pull request #204).

• BuildErrors are now more informative. They come with a complete sentence as
error message, and also provide suggestions (pull request #691).

• Fix a bug in the user agent parser where Safari’s build number instead of version
would be extracted (pull request #703).

• Fixed issue where RedisCache set_many was broken for twemproxy, which
doesn’t support the default MULTI command (pull request #702).

• mimetype parameters on request and response classes are now always converted
to lowercase.

230

• Changed cache so that cache never expires if timeout is 0. This also fixes an issue
with redis setex (issue #550)

• Werkzeug now assumes UTF-8 as filesystem encoding on Unix if Python detected
it as ASCII.

• New optional has method on caches.

• Fixed various bugs in parse_options_header (pull request #643).

• If the reloader is enabled the server will now open the socket in the parent pro-
cess if this is possible. This means that when the reloader kicks in the connection
from client will wait instead of tearing down. This does not work on all Python
versions.

• Implemented PIN based authentication for the debugger. This can optionally be
disabled but is discouraged. This change was necessary as it has been discovered
that too many people run the debugger in production.

• Devserver no longer requires SSL module to be installed.

Version 0.10.5

(bugfix release, release date yet to be decided)

• Reloader: Correctly detect file changes made by moving temporary files over the
original, which is e.g. the case with PyCharm (pull request #722).

• Fix bool behavior of werkzeug.datastructures.ETags under Python 3 (issue
#744).

Version 0.10.4

(bugfix release, released on March 26th 2015)

• Re-release of 0.10.3 with packaging artifacts manually removed.

Version 0.10.3

(bugfix release, released on March 26th 2015)

• Re-release of 0.10.2 without packaging artifacts.

Version 0.10.2

(bugfix release, released on March 26th 2015)

• Fixed issue where empty could break third-party libraries that relied on keyword
arguments (pull request #675)

231

• Improved Rule.empty by providing a `get_empty_kwargs to allow setting custom
kwargs without having to override entire empty method. (pull request #675)

• Fixed `extra_files` parameter for reloader to not cause startup to crash when
included in server params

• Using MultiDict when building URLs is now not supported again. The behavior
introduced several regressions.

• Fix performance problems with stat-reloader (pull request #715).

Version 0.10.1

(bugfix release, released on February 3rd 2015)

• Fixed regression with multiple query values for URLs (pull request #667).

• Fix issues with eventlet’s monkeypatching and the builtin server (pull request
#663).

Version 0.10

Released on January 30th 2015, codename Bagger.

• Changed the error handling of and improved testsuite for the caches in contrib.
cache.

• Fixed a bug on Python 3 when creating adhoc ssl contexts, due to sys.maxint not
being defined.

• Fixed a bug on Python 3, that caused make_ssl_devcert() to fail with an excep-
tion.

• Added exceptions for 504 and 505.

• Added support for ChromeOS detection.

• Added UUID converter to the routing system.

• Added message that explains how to quit the server.

• Fixed a bug on Python 2, that caused len for werkzeug.datastructures.
CombinedMultiDict to crash.

• Added support for stdlib pbkdf2 hmac if a compatible digest is found.

• Ported testsuite to use py.test.

• Minor optimizations to various middlewares (pull requests #496 and #571).

• Use stdlib ssl module instead of OpenSSL for the builtin server (issue #434).
This means that OpenSSL contexts are not supported anymore, but instead ssl.
SSLContext from the stdlib.

• Allow protocol-relative URLs when building external URLs.

232

• Fixed Atom syndication to print time zone offset for tz-aware datetime objects
(pull request #254).

• Improved reloader to track added files and to recover from broken sys.modules
setups with syntax errors in packages.

• cache.RedisCache now supports arbitrary **kwargs for the redis object.

• werkzeug.test.Client now uses the original request method when resolving 307
redirects (pull request #556).

• werkzeug.datastructures.MIMEAccept now properly deals with mimetype pa-
rameters (pull request #205).

• werkzeug.datastructures.Accept now handles a quality of 0 as intolerable, as
per RFC 2616 (pull request #536).

• werkzeug.urls.url_fix now properly encodes hostnames with idna encoding
(issue #559). It also doesn’t crash on malformed URLs anymore (issue #582).

• werkzeug.routing.MapAdapter.match now recognizes the difference between the
path / and an empty one (issue #360).

• The interactive debugger now tries to decode non-ascii filenames (issue #469).

• Increased default key size of generated SSL certificates to 1024 bits (issue #611).

• Added support for specifying a Response subclass to use when calling
redirect().

• werkzeug.test.EnvironBuilder now doesn’t use the request method anymore
to guess the content type, and purely relies on the form, files and input_stream
properties (issue #620).

• Added Symbian to the user agent platform list.

• Fixed make_conditional to respect automatically_set_content_length

• Unset Content-Length when writing to response.stream (issue #451)

• wrappers.Request.method is now always uppercase, eliminating inconsistencies
of the WSGI environment (issue 647).

• routing.Rule.empty now works correctly with subclasses of Rule (pull request
#645).

• Made map updating safe in light of concurrent updates.

• Allow multiple values for the same field for url building (issue #658).

Version 0.9.7

(bugfix release, release date to be decided)

• Fix unicode problems in werkzeug.debug.tbtools.

• Fix Python 3-compatibility problems in werkzeug.posixemulation.

233

• Backport fix of fatal typo for ImmutableList (issue #492).

• Make creation of the cache dir for FileSystemCache atomic (issue #468).

• Use native strings for memcached keys to work with Python 3 client (issue #539).

• Fix charset detection for werkzeug.debug.tbtools.Frame objects (issues #547 and
#532).

• Fix AttributeError masking in werkzeug.utils.import_string (issue #182).

• Explicitly shut down server (issue #519).

• Fix timeouts greater than 2592000 being misinterpreted as UNIX timestamps in
werkzeug.contrib.cache.MemcachedCache (issue #533).

• Fix bug where werkzeug.exceptions.abort would raise an arbitrary subclass of
the expected class (issue #422).

• Fix broken jsrouting (due to removal of werkzeug.templates)

• werkzeug.urls.url_fix now doesn’t crash on malformed URLs anymore, but
returns them unmodified. This is a cheap workaround for #582, the proper fix is
included in version 0.10.

• The repr of werkzeug.wrappers.Request doesn’t crash on non-ASCII-values any-
more (pull request #466).

• Fix bug in cache.RedisCache when combined with redis.StrictRedis object
(pull request #583).

• The qop parameter for WWW-Authenticate headers is now always quoted, as re-
quired by RFC 2617 (issue #633).

• Fix bug in werkzeug.contrib.cache.SimpleCache with Python 3 where add/set
may throw an exception when pruning old entries from the cache (pull request
#651).

Version 0.9.6

(bugfix release, released on June 7th 2014)

• Added a safe conversion for IRI to URI conversion and use that internally to
work around issues with spec violations for protocols such as itms-service.

Version 0.9.7

• Fixed uri_to_iri() not re-encoding hashes in query string parameters.

Version 0.9.5

(bugfix release, released on June 7th 2014)

234

• Forward charset argument from request objects to the environ builder.

• Fixed error handling for missing boundaries in multipart data.

• Fixed session creation on systems without os.urandom().

• Fixed pluses in dictionary keys not being properly URL encoded.

• Fixed a problem with deepcopy not working for multi dicts.

• Fixed a double quoting issue on redirects.

• Fixed a problem with unicode keys appearing in headers on 2.x.

• Fixed a bug with unicode strings in the test builder.

• Fixed a unicode bug on Python 3 in the WSGI profiler.

• Fixed an issue with the safe string compare function on Python 2.7.7 and Python
3.4.

Version 0.9.4

(bugfix release, released on August 26th 2013)

• Fixed an issue with Python 3.3 and an edge case in cookie parsing.

• Fixed decoding errors not handled properly through the WSGI decoding dance.

• Fixed URI to IRI conversion incorrectly decoding percent signs.

Version 0.9.3

(bugfix release, released on July 25th 2013)

• Restored behavior of the data descriptor of the request class to pre 0.9 behavior.
This now also means that .data and .get_data() have different behavior. New
code should use .get_data() always.

In addition to that there is now a flag for the .get_data() method that controls
what should happen with form data parsing and the form parser will honor
cached data. This makes dealing with custom form data more consistent.

Version 0.9.2

(bugfix release, released on July 18th 2013)

• Added unsafe parameter to url_quote().

• Fixed an issue with url_quote_plus() not quoting ‘+’ correctly.

• Ported remaining parts of RedisCache to Python 3.3.

• Ported remaining parts of MemcachedCache to Python 3.3

235

• Fixed a deprecation warning in the contrib atom module.

• Fixed a regression with setting of content types through the headers dictionary
instead with the content type parameter.

• Use correct name for stdlib secure string comparison function.

• Fixed a wrong reference in the docstring of release_local().

• Fixed an AttributeError that sometimes occurred when accessing the werkzeug.
wrappers.BaseResponse.is_streamed attribute.

Version 0.9.1

(bugfix release, released on June 14th 2013)

• Fixed an issue with integers no longer being accepted in certain parts of the rout-
ing system or URL quoting functions.

• Fixed an issue with url_quote not producing the right escape codes for single digit
codepoints.

• Fixed an issue with SharedDataMiddleware not reading the path correctly and
breaking on etag generation in some cases.

• Properly handle Expect: 100-continue in the development server to resolve issues
with curl.

• Automatically exhaust the input stream on request close. This should fix issues
where not touching request files results in a timeout.

• Fixed exhausting of streams not doing anything if a non-limited stream was
passed into the multipart parser.

• Raised the buffer sizes for the multipart parser.

Version 0.9

Released on June 13nd 2013, codename Planierraupe.

• Added support for tell() on the limited stream.

• ETags now is nonzero if it contains at least one etag of any kind, including weak
ones.

• Added a workaround for a bug in the stdlib for SSL servers.

• Improved SSL interface of the devserver so that it can generate certificates easily
and load them from files.

• Refactored test client to invoke the open method on the class for redirects. This
makes subclassing more powerful.

• werkzeug.wsgi.make_chunk_iter() and werkzeug.wsgi.make_line_iter() now
support processing of iterators and streams.

236

• URL generation by the routing system now no longer quotes +.

• URL fixing now no longer quotes certain reserved characters.

• The werkzeug.security.generate_password_hash() and check functions now
support any of the hashlib algorithms.

• wsgi.get_current_url is now ascii safe for browsers sending non-ascii data in query
strings.

• improved parsing behavior for werkzeug.http.parse_options_header()

• added more operators to local proxies.

• added a hook to override the default converter in the routing system.

• The description field of HTTP exceptions is now always escaped. Use markup
objects to disable that.

• Added number of proxy argument to the proxy fix to make it more secure out
of the box on common proxy setups. It will by default no longer trust the x-
forwarded-for header as much as it did before.

• Added support for fragment handling in URI/IRI functions.

• Added custom class support for werkzeug.http.parse_dict_header().

• Renamed LighttpdCGIRootFix to CGIRootFix.

• Always treat + as safe when fixing URLs as people love misusing them.

• Added support to profiling into directories in the contrib profiler.

• The escape function now by default escapes quotes.

• Changed repr of exceptions to be less magical.

• Simplified exception interface to no longer require environments to be passed to
receive the response object.

• Added sentinel argument to IterIO objects.

• Added pbkdf2 support for the security module.

• Added a plain request type that disables all form parsing to only leave the stream
behind.

• Removed support for deprecated fix_headers.

• Removed support for deprecated header_list.

• Removed support for deprecated parameter for iter_encoded.

• Removed support for deprecated non-silent usage of the limited stream object.

• Removed support for previous dummy writable parameter on the cached prop-
erty.

• Added support for explicitly closing request objects to close associated resources.

237

• Conditional request handling or access to the data property on responses no
longer ignores direct passthrough mode.

• Removed werkzeug.templates and werkzeug.contrib.kickstart.

• Changed host lookup logic for forwarded hosts to allow lists of hosts in which
case only the first one is picked up.

• Added wsgi.get_query_string, wsgi.get_path_info and wsgi.get_script_name and
made the wsgi.pop_path_info and wsgi.peek_path_info functions perform unicode
decoding. This was necessary to avoid having to expose the WSGI encoding
dance on Python 3.

• Added content_encoding and content_md5 to the request object’s common request
descriptor mixin.

• added options and trace to the test client.

• Overhauled the utilization of the input stream to be easier to use and better to
extend. The detection of content payload on the input side is now more com-
pliant with HTTP by detecting off the content type header instead of the request
method. This also now means that the stream property on the request class is
always available instead of just when the parsing fails.

• Added support for using werkzeug.wrappers.BaseResponse in a with statement.

• Changed get_app_iter to fetch the response early so that it does not fail when
wrapping a response iterable. This makes filtering easier.

• Introduced get_data and set_data methods for responses.

• Introduced get_data for requests.

• Soft deprecated the data descriptors for request and response objects.

• Added as_bytes operations to some of the headers to simplify working with
things like cookies.

• Made the debugger paste tracebacks into github’s gist service as private pastes.

Version 0.8.4

(bugfix release, release date to be announced)

• Added a favicon to the debugger which fixes problem with state changes being
triggered through a request to /favicon.ico in Google Chrome. This should fix
some problems with Flask and other frameworks that use context local objects
on a stack with context preservation on errors.

• Fixed an issue with scrolling up in the debugger.

• Fixed an issue with debuggers running on a different URL than the URL root.

• Fixed a problem with proxies not forwarding some rarely used special methods
properly.

238

• Added a workaround to prevent the XSS protection from Chrome breaking the
debugger.

• Skip redis tests if redis is not running.

• Fixed a typo in the multipart parser that caused content-type to not be picked up
properly.

Version 0.8.3

(bugfix release, released on February 5th 2012)

• Fixed another issue with werkzeug.wsgi.make_line_iter() where lines longer
than the buffer size were not handled properly.

• Restore stdout after debug console finished executing so that the debugger can
be used on GAE better.

• Fixed a bug with the redis cache for int subclasses (affects bool caching).

• Fixed an XSS problem with redirect targets coming from untrusted sources.

• Redis cache backend now supports password authentication.

Version 0.8.2

(bugfix release, released on December 16th 2011)

• Fixed a problem with request handling of the builtin server not responding to
socket errors properly.

• The routing request redirect exception’s code attribute is now used properly.

• Fixed a bug with shutdowns on Windows.

• Fixed a few unicode issues with non-ascii characters being hardcoded in URL
rules.

• Fixed two property docstrings being assigned to fdel instead of __doc__.

• Fixed an issue where CRLF line endings could be split into two by the line iter
function, causing problems with multipart file uploads.

Version 0.8.1

(bugfix release, released on September 30th 2011)

• Fixed an issue with the memcache not working properly.

• Fixed an issue for Python 2.7.1 and higher that broke copying of multidicts with
copy.copy().

239

https://docs.python.org/dev/library/copy.html#copy.copy

• Changed hashing methodology of immutable ordered multi dicts for a potential
problem with alternative Python implementations.

Version 0.8

Released on September 29th 2011, codename Lötkolben

• Removed data structure specific KeyErrors for a general purpose
BadRequestKeyError.

• Documented werkzeug.wrappers.BaseRequest._load_form_data().

• The routing system now also accepts strings instead of dictionaries for the
query_args parameter since we’re only passing them through for redirects.

• Werkzeug now automatically sets the content length immediately when the data
attribute is set for efficiency and simplicity reasons.

• The routing system will now normalize server names to lowercase.

• The routing system will no longer raise ValueErrors in case the configuration
for the server name was incorrect. This should make deployment much easier
because you can ignore that factor now.

• Fixed a bug with parsing HTTP digest headers. It rejected headers with missing
nc and nonce params.

• Proxy fix now also updates wsgi.url_scheme based on X-Forwarded-Proto.

• Added support for key prefixes to the redis cache.

• Added the ability to suppress some auto corrections in the wrappers that are now
controlled via autocorrect_location_header and automatically_set_content_length on
the response objects.

• Werkzeug now uses a new method to check that the length of incoming data is
complete and will raise IO errors by itself if the server fails to do so.

• make_line_iter() now requires a limit that is not higher than the length the
stream can provide.

• Refactored form parsing into a form parser class that makes it possible to hook
into individual parts of the parsing process for debugging and extending.

• For conditional responses the content length is no longer set when it is already
there and added if missing.

• Immutable datastructures are hashable now.

• Headers datastructure no longer allows newlines in values to avoid header in-
jection attacks.

• Made it possible through subclassing to select a different remote addr in the
proxy fix.

240

• Added stream based URL decoding. This reduces memory usage on large trans-
mitted form data that is URL decoded since Werkzeug will no longer load all the
unparsed data into memory.

• Memcache client now no longer uses the buggy cmemcache module and sup-
ports pylibmc. GAE is not tried automatically and the dedicated class is no
longer necessary.

• Redis cache now properly serializes data.

• Removed support for Python 2.4

Version 0.7.2

(bugfix release, released on September 30th 2011)

• Fixed a CSRF problem with the debugger.

• The debugger is now generating private pastes on lodgeit.

• If URL maps are now bound to environments the query arguments are properly
decoded from it for redirects.

Version 0.7.1

(bugfix release, released on July 26th 2011)

• Fixed a problem with newer versions of IPython.

• Disabled pyinotify based reloader which does not work reliably.

Version 0.7

Released on July 24th 2011, codename Schraubschlüssel

• Add support for python-libmemcached to the Werkzeug cache abstraction layer.

• Improved url_decode() and url_encode() performance.

• Fixed an issue where the SharedDataMiddleware could cause an internal server
error on weird paths when loading via pkg_resources.

• Fixed an URL generation bug that caused URLs to be invalid if a generated com-
ponent contains a colon.

• werkzeug.import_string() now works with partially set up packages properly.

• Disabled automatic socket switching for IPv6 on the development server due to
problems it caused.

• Werkzeug no longer overrides the Date header when creating a conditional
HTTP response.

241

• The routing system provides a method to retrieve the matching methods for a
given path.

• The routing system now accepts a parameter to change the encoding error be-
haviour.

• The local manager can now accept custom ident functions in the constructor that
are forwarded to the wrapped local objects.

• url_unquote_plus now accepts unicode strings again.

• Fixed an issue with the filesystem session support’s prune function and concur-
rent usage.

• Fixed a problem with external URL generation discarding the port.

• Added support for pylibmc to the Werkzeug cache abstraction layer.

• Fixed an issue with the new multipart parser that happened when a linebreak
happened to be on the chunk limit.

• Cookies are now set properly if ports are in use. A runtime error is raised if one
tries to set a cookie for a domain without a dot.

• Fixed an issue with Template.from_file not working for file descriptors.

• Reloader can now use inotify to track reloads. This requires the pyinotify library
to be installed.

• Werkzeug debugger can now submit to custom lodgeit installations.

• redirect function’s status code assertion now allows 201 to be used as redirection
code. While it’s not a real redirect, it shares enough with redirects for the function
to still be useful.

• Fixed securecookie for pypy.

• Fixed ValueErrors being raised on calls to best_match on MIMEAccept objects when
invalid user data was supplied.

• Deprecated werkzeug.contrib.kickstart and werkzeug.contrib.testtools

• URL routing now can be passed the URL arguments to keep them for redirects.
In the future matching on URL arguments might also be possible.

• Header encoding changed from utf-8 to latin1 to support a port to Python 3.
Bytestrings passed to the object stay untouched which makes it possible to have
utf-8 cookies. This is a part where the Python 3 version will later change in that
it will always operate on latin1 values.

• Fixed a bug in the form parser that caused the last character to be dropped off if
certain values in multipart data are used.

• Multipart parser now looks at the part-individual content type header to over-
ride the global charset.

• Introduced mimetype and mimetype_params attribute for the file storage object.

242

• Changed FileStorage filename fallback logic to skip special filenames that Python
uses for marking special files like stdin.

• Introduced more HTTP exception classes.

• call_on_close now can be used as a decorator.

• Support for redis as cache backend.

• Added BaseRequest.scheme.

• Support for the RFC 5789 PATCH method.

• New custom routing parser and better ordering.

• Removed support for is_behind_proxy. Use a WSGI middleware instead that
rewrites the REMOTE_ADDR according to your setup. Also see the werkzeug.
contrib.fixers.ProxyFix for a drop-in replacement.

• Added cookie forging support to the test client.

• Added support for host based matching in the routing system.

• Switched from the default ‘ignore’ to the better ‘replace’ unicode error handling
mode.

• The builtin server now adds a function named ‘werkzeug.server.shutdown’ into
the WSGI env to initiate a shutdown. This currently only works in Python 2.6
and later.

• Headers are now assumed to be latin1 for better compatibility with Python 3
once we have support.

• Added werkzeug.security.safe_join().

• Added accept_json property analogous to accept_html on the werkzeug.
datastructures.MIMEAccept.

• werkzeug.utils.import_string() now fails with much better error messages
that pinpoint to the problem.

• Added support for parsing of the If-Range header (werkzeug.http.
parse_if_range_header() and werkzeug.datastructures.IfRange).

• Added support for parsing of the Range header (werkzeug.http.
parse_range_header() and werkzeug.datastructures.Range).

• Added support for parsing of the Content-Range header of responses and pro-
vided an accessor object for it (werkzeug.http.parse_content_range_header()
and werkzeug.datastructures.ContentRange).

Version 0.6.2

(bugfix release, released on April 23th 2010)

• renamed the attribute implicit_seqence_conversion attribute of the request object to
implicit_sequence_conversion.

243

Version 0.6.1

(bugfix release, released on April 13th 2010)

• heavily improved local objects. Should pick up standalone greenlet builds now
and support proxies to free callables as well. There is also a stacked local now
that makes it possible to invoke the same application from within itself by push-
ing current request/response on top of the stack.

• routing build method will also build non-default method rules properly if no
method is provided.

• added proper IPv6 support for the builtin server.

• windows specific filesystem session store fixes. (should now be more stable un-
der high concurrency)

• fixed a NameError in the session system.

• fixed a bug with empty arguments in the werkzeug.script system.

• fixed a bug where log lines will be duplicated if an application uses logging.
basicConfig() (#499)

• added secure password hashing and checking functions.

• HEAD is now implicitly added as method in the routing system if GET is present.
Not doing that was considered a bug because often code assumed that this is the
case and in web servers that do not normalize HEAD to GET this could break
HEAD requests.

• the script support can start SSL servers now.

Version 0.6

Released on Feb 19th 2010, codename Hammer.

• removed pending deprecations

• sys.path is now printed from the testapp.

• fixed an RFC 2068 incompatibility with cookie value quoting.

• the FileStorage now gives access to the multipart headers.

• cached_property.writeable has been deprecated.

• MapAdapter.match() now accepts a return_rule keyword argument that returns
the matched Rule instead of just the endpoint

• routing.Map.bind_to_environ() raises a more correct error message now if the
map was bound to an invalid WSGI environment.

• added support for SSL to the builtin development server.

244

• Response objects are no longer modified in place when they are evaluated as
WSGI applications. For backwards compatibility the fix_headers function is still
called in case it was overridden. You should however change your application to
use get_wsgi_headers if you need header modifications before responses are sent
as the backwards compatibility support will go away in future versions.

• append_slash_redirect() no longer requires the QUERY_STRING to be in the
WSGI environment.

• added DynamicCharsetResponseMixin

• added DynamicCharsetRequestMixin

• added BaseRequest.url_charset

• request and response objects have a default __repr__ now.

• builtin data structures can be pickled now.

• the form data parser will now look at the filename instead the content type to
figure out if it should treat the upload as regular form data or file upload. This
fixes a bug with Google Chrome.

• improved performance of make_line_iter and the multipart parser for binary up-
loads.

• fixed is_streamed

• fixed a path quoting bug in EnvironBuilder that caused PATH_INFO and
SCRIPT_NAME to end up in the environ unquoted.

• werkzeug.BaseResponse.freeze() now sets the content length.

• for unknown HTTP methods the request stream is now always limited instead
of being empty. This makes it easier to implement DAV and other protocols on
top of Werkzeug.

• added werkzeug.MIMEAccept.best_match()

• multi-value test-client posts from a standard dictionary are now supported. Pre-
viously you had to use a multi dict.

• rule templates properly work with submounts, subdomains and other rule fac-
tories now.

• deprecated non-silent usage of the werkzeug.LimitedStream.

• added support for IRI handling to many parts of Werkzeug.

• development server properly logs to the werkzeug logger now.

• added werkzeug.extract_path_info()

• fixed a querystring quoting bug in url_fix()

• added fallback_mimetype to werkzeug.SharedDataMiddleware.

• deprecated BaseResponse.iter_encoded()‘s charset parameter.

245

• added BaseResponse.make_sequence(), BaseResponse.is_sequence and
BaseResponse._ensure_sequence().

• added better __repr__ of werkzeug.Map

• import_string accepts unicode strings as well now.

• development server doesn’t break on double slashes after the host name.

• better __repr__ and __str__ of werkzeug.exceptions.HTTPException

• test client works correctly with multiple cookies now.

• the werkzeug.routing.Map now has a class attribute with the default converter
mapping. This helps subclasses to override the converters without passing them
to the constructor.

• implemented OrderedMultiDict

• improved the session support for more efficient session storing on the filesys-
tem. Also added support for listing of sessions currently stored in the filesystem
session store.

• werkzeug no longer utilizes the Python time module for parsing which means
that dates in a broader range can be parsed.

• the wrappers have no class attributes that make it possible to swap out the dict
and list types it uses.

• werkzeug debugger should work on the appengine dev server now.

• the URL builder supports dropping of unexpected arguments now. Previously
they were always appended to the URL as query string.

• profiler now writes to the correct stream.

Version 0.5.1

(bugfix release for 0.5, released on July 9th 2009)

• fixed boolean check of FileStorage

• url routing system properly supports unicode URL rules now.

• file upload streams no longer have to provide a truncate() method.

• implemented BaseRequest._form_parsing_failed().

• fixed #394

• ImmutableDict.copy(), ImmutableMultiDict.copy() and
ImmutableTypeConversionDict.copy() return mutable shallow copies.

• fixed a bug with the make_runserver script action.

• MultiDict.items() and MutiDict.iteritems() now accept an argument to re-
turn a pair for each value of each key.

246

• the multipart parser works better with hand-crafted multipart requests now that
have extra newlines added. This fixes a bug with setuptools uploads not handled
properly (#390)

• fixed some minor bugs in the atom feed generator.

• fixed a bug with client cookie header parsing being case sensitive.

• fixed a not-working deprecation warning.

• fixed package loading for SharedDataMiddleware.

• fixed a bug in the secure cookie that made server-side expiration on servers with
a local time that was not set to UTC impossible.

• fixed console of the interactive debugger.

Version 0.5

Released on April 24th, codename Schlagbohrer.

• requires Python 2.4 now

• fixed a bug in IterIO

• added MIMEAccept and CharsetAccept that work like the regular Accept but have
extra special normalization for mimetypes and charsets and extra convenience
methods.

• switched the serving system from wsgiref to something homebrew.

• the Client now supports cookies.

• added the fixers module with various fixes for webserver bugs and hosting
setup side-effects.

• added werkzeug.contrib.wrappers

• added is_hop_by_hop_header()

• added is_entity_header()

• added remove_hop_by_hop_headers()

• added pop_path_info()

• added peek_path_info()

• added wrap_file() and FileWrapper

• moved LimitedStream from the contrib package into the regular werkzeug one
and changed the default behavior to raise exceptions rather than stopping with-
out warning. The old class will stick in the module until 0.6.

• implemented experimental multipart parser that replaces the old CGI hack.

• added dump_options_header() and parse_options_header()

• added quote_header_value() and unquote_header_value()

247

• url_encode() and url_decode() now accept a separator argument to switch be-
tween & and ; as pair separator. The magic switch is no longer in place.

• all form data parsing functions as well as the BaseRequest object have parameters
(or attributes) to limit the number of incoming bytes (either totally or per field).

• added LanguageAccept

• request objects are now enforced to be read only for all collections.

• added many new collection classes, refactored collections in general.

• test support was refactored, semi-undocumented werkzeug.test.File was replaced
by werkzeug.FileStorage.

• EnvironBuilder was added and unifies the previous distinct create_environ(),
Client and BaseRequest.from_values(). They all work the same now which is
less confusing.

• officially documented imports from the internal modules as undefined behavior.
These modules were never exposed as public interfaces.

• removed FileStorage.__len__ which previously made the object falsy for browsers
not sending the content length which all browsers do.

• SharedDataMiddleware uses wrap_file now and has a configurable cache timeout.

• added CommonRequestDescriptorsMixin

• added CommonResponseDescriptorsMixin.mimetype_params

• added werkzeug.contrib.lint

• added passthrough_errors to run_simple.

• added secure_filename

• added make_line_iter()

• MultiDict copies now instead of revealing internal lists to the caller for getlist
and iteration functions that return lists.

• added follow_redirect to the open() of Client.

• added support for extra_files in make_runserver()

Version 0.4.1

(Bugfix release, released on January 11th 2009)

• werkzeug.contrib.cache.Memcached accepts now objects that implement the mem-
cache.Client interface as alternative to a list of strings with server addresses.
There is also now a GAEMemcachedCache that connects to the Google appengine
cache.

• explicitly convert secret keys to bytestrings now because Python 2.6 no longer
does that.

248

https://docs.python.org/dev/library/functions.html#open

• url_encode and all interfaces that call it, support ordering of options now which
however is disabled by default.

• the development server no longer resolves the addresses of clients.

• Fixed a typo in werkzeug.test that broke File.

• Map.bind_to_environ uses the Host header now if available.

• Fixed BaseCache.get_dict (#345)

• werkzeug.test.Client can now run the application buffered in which case the ap-
plication is properly closed automatically.

• Fixed Headers.set (#354). Caused header duplication before.

• Fixed Headers.pop (#349). default parameter was not properly handled.

• Fixed UnboundLocalError in create_environ (#351)

• Headers is more compatible with wsgiref now.

• Template.render accepts multidicts now.

• dropped support for Python 2.3

Version 0.4

Released on November 23rd 2008, codename Schraubenzieher.

• Client supports an empty data argument now.

• fixed a bug in Response.application that made it impossible to use it as method
decorator.

• the session system should work on appengine now

• the secure cookie works properly in load balanced environments with different
cpu architectures now.

• CacheControl.no_cache and CacheControl.private behavior changed to reflect the
possibilities of the HTTP RFC. Setting these attributes to None or True now sets
the value to “the empty value”. More details in the documentation.

• fixed werkzeug.contrib.atom.AtomFeed.__call__. (#338)

• BaseResponse.make_conditional now always returns self. Previously it didn’t for
post requests and such.

• fixed a bug in boolean attribute handling of html and xhtml.

• added graceful error handling to the debugger pastebin feature.

• added a more list like interface to Headers (slicing and indexing works now)

• fixed a bug with the __setitem__ method of Headers that didn’t properly remove
all keys on replacing.

249

• added remove_entity_headers which removes all entity headers from a list of head-
ers (or a Headers object)

• the responses now automatically call remove_entity_headers if the status code is
304.

• fixed a bug with Href query parameter handling. Previously the last item of a
call to Href was not handled properly if it was a dict.

• headers now support a pop operation to better work with environ properties.

Version 0.3.1

(bugfix release, released on June 24th 2008)

• fixed a security problem with werkzeug.contrib.SecureCookie. More details avail-
able in the release announcement.

Version 0.3

Released on June 14th 2008, codename EUR325CAT6.

• added support for redirecting in url routing.

• added Authorization and AuthorizationMixin

• added WWWAuthenticate and WWWAuthenticateMixin

• added parse_list_header

• added parse_dict_header

• added parse_authorization_header

• added parse_www_authenticate_header

• added _get_current_object method to LocalProxy objects

• added parse_form_data

• MultiDict, CombinedMultiDict, Headers, and EnvironHeaders raise special key er-
rors now that are subclasses of BadRequest so if you don’t catch them they give
meaningful HTTP responses.

• added support for alternative encoding error handling and the new HTTPUni-
codeError which (if not caught) behaves like a BadRequest.

• added BadRequest.wrap.

• added ETag support to the SharedDataMiddleware and added an option to dis-
able caching.

• fixed is_xhr on the request objects.

• fixed error handling of the url adapter’s dispatch method. (#318)

250

http://lucumr.pocoo.org/cogitations/2008/06/24/werkzeug-031-released/

• fixed bug with SharedDataMiddleware.

• fixed Accept.values.

• EnvironHeaders contain content-type and content-length now

• url_encode treats lists and tuples in dicts passed to it as multiple values for the
same key so that one doesn’t have to pass a MultiDict to the function.

• added validate_arguments

• added BaseRequest.application

• improved Python 2.3 support

• run_simple accepts use_debugger and use_evalex parameters now, like the
make_runserver factory function from the script module.

• the environ_property is now read-only by default

• it’s now possible to initialize requests as “shallow” requests which causes run-
time errors if the request object tries to consume the input stream.

Version 0.2

Released Feb 14th 2008, codename Faustkeil.

• Added AnyConverter to the routing system.

• Added werkzeug.contrib.securecookie

• Exceptions have a get_response() method that return a response object

• fixed the path ordering bug (#293), thanks Thomas Johansson

• BaseReporterStream is now part of the werkzeug contrib module. From Werkzeug
0.3 onwards you will have to import it from there.

• added DispatcherMiddleware.

• RequestRedirect is now a subclass of HTTPException and uses a 301 status code
instead of 302.

• url_encode and url_decode can optionally treat keys as unicode strings now, too.

• werkzeug.script has a different caller format for boolean arguments now.

• renamed lazy_property to cached_property.

• added import_string.

• added is_* properties to request objects.

• added empty() method to routing rules.

• added werkzeug.contrib.profiler.

• added extends to Headers.

• added dump_cookie and parse_cookie.

251

• added as_tuple to the Client.

• added werkzeug.contrib.testtools.

• added werkzeug.unescape

• added BaseResponse.freeze

• added werkzeug.contrib.atom

• the HTTPExceptions accept an argument description now which overrides the
default description.

• the MapAdapter has a default for path info now. If you use bind_to_environ you
don’t have to pass the path later.

• the wsgiref subclass werkzeug uses for the dev server does not use direct
sys.stderr logging any more but a logger called “werkzeug”.

• implemented Href.

• implemented find_modules

• refactored request and response objects into base objects, mixins and full featured
subclasses that implement all mixins.

• added simple user agent parser

• werkzeug’s routing raises MethodNotAllowed now if it matches a rule but for a
different method.

• many fixes and small improvements

Version 0.1

Released on Dec 9th 2007, codename Wictorinoxger.

• Initial release

API Changes

0.9

• Soft-deprecated the BaseRequest.data and BaseResponse.data attributes
and introduced new methods to interact with entity data. This will allows
in the future to make better APIs to deal with request and response entity
bodies. So far there is no deprecation warning but users are strongly en-
couraged to update.

• The Headers and EnvironHeaders datastructures are now designed to op-
erate on unicode data. This is a backwards incompatible change and was
necessary for the Python 3 support.

252

• The Headers object no longer supports in-place operations through the
old linked method. This has been removed without replacement due to
changes on the encoding model.

0.6.2

• renamed the attribute implicit_seqence_conversion attribute of the request ob-
ject to implicit_sequence_conversion. Because this is a feature that is typically
unused and was only in there for the 0.6 series we consider this a bug that
does not require backwards compatibility support which would be impos-
sible to properly implement.

0.6

• Old deprecations were removed.

• cached_property.writeable was deprecated.

• BaseResponse.get_wsgi_headers() replaces the older BaseRe-
sponse.fix_headers method. The older method stays around for backwards
compatibility reasons until 0.7.

• BaseResponse.header_list was deprecated. You should not need this function,
get_wsgi_headers and the to_list method on the regular headers should serve
as a replacement.

• Deprecated BaseResponse.iter_encoded‘s charset parameter.

• LimitedStream non-silent usage was deprecated.

• the __repr__ of HTTP exceptions changed. This might break doctests.

0.5

• Werkzeug switched away from wsgiref as library for the builtin webserver.

• The encoding parameter for Templates is now called charset. The older one
will work for another two versions but warn with a DeprecationWarning.

• The Client has cookie support now which is enabled by default.

• BaseResponse._get_file_stream() is now passed more parameters to make
the function more useful. In 0.6 the old way to invoke the method will no
longer work. To support both newer and older Werkzeug versions you can
add all arguments to the signature and provide default values for each of
them.

• url_decode() no longer supports both & and ; as separator. This has to be
specified explicitly now.

• The request object is now enforced to be read-only for all attributes. If your
code relies on modifications of some values makes sure to create copies of
them using the mutable counterparts!

• Some data structures that were only used on request objects are now im-
mutable as well. (Authorization / Accept and subclasses)

253

https://docs.python.org/dev/library/exceptions.html#DeprecationWarning

• CacheControl was split up into RequestCacheControl and
ResponseCacheControl, the former being immutable. The old class
will go away in 0.6

• undocumented werkzeug.test.File was replaced by FileWrapper.

• it’s not longer possible to pass dicts inside the data dict in Client. Use tuples
instead.

• It’s save to modify the return value of MultiDict.getlist() and methods
that return lists in the MultiDict now. The class creates copies instead of
revealing the internal lists. However MultiDict.setlistdefault still (and
intentionally) returns the internal list for modifications.

0.3

• Werkzeug 0.3 will be the last release with Python 2.3 compatibility.

• The environ_property is now read-only by default. This decision was made
because the request in general should be considered read-only.

0.2

• The BaseReporterStream is now part of the contrib module, the new module
is werkzeug.contrib.reporterstream. Starting with 0.3, the old import will not
work any longer.

• RequestRedirect now uses a 301 status code. Previously a 302 status code was
used incorrectly. If you want to continue using this 302 code, use response
= redirect(e.new_url, 302).

• lazy_property is now called cached_property. The alias for the old name will
disappear in Werkzeug 0.3.

• match can now raise MethodNotAllowed if configured for methods and there
was no method for that request.

• The response_body attribute on the response object is now called data. With
Werkzeug 0.3 the old name will not work any longer.

• The file-like methods on the response object are deprecated. If you want
to use the response object as file like object use the Response class or a sub-
class of BaseResponse and mix the new ResponseStreamMixin class and use
response.stream.

If you can’t find the information you’re looking for, have a look at the index or try to
find it using the search function:

• genindex

• search

254

Index

Symbols
__call__() (werkzeug.exceptions.HTTPException

method), 172
__call__() (werkzeug.wrappers.BaseResponse

method), 65
_easteregg() (in module

werkzeug._internal), 166
_ensure_sequence()

(werkzeug.wrappers.BaseResponse
method), 65

_get_current_object()
(werkzeug.local.LocalProxy
method), 163

_get_file_stream()
(werkzeug.wrappers.BaseRequest
method), 57

A
abort() (in module werkzeug.exceptions),

173
Aborter (class in werkzeug.exceptions),

173
Accept (class in

werkzeug.datastructures), 129
accept_charsets

(werkzeug.wrappers.AcceptMixin
attribute), 70

accept_encodings
(werkzeug.wrappers.AcceptMixin
attribute), 71

accept_html (werkzeug.datastructures.MIMEAccept
attribute), 130

accept_json (werkzeug.datastructures.MIMEAccept
attribute), 130

accept_languages

(werkzeug.wrappers.AcceptMixin
attribute), 71

accept_mimetypes
(werkzeug.wrappers.AcceptMixin
attribute), 71

accept_ranges
(werkzeug.wrappers.ETagResponseMixin
attribute), 72

accept_xhtml
(werkzeug.datastructures.MIMEAccept
attribute), 130

AcceptMixin (class in
werkzeug.wrappers), 70

access_route (werkzeug.wrappers.BaseRequest
attribute), 58

add() (werkzeug.contrib.atom.AtomFeed
method), 188

add() (werkzeug.contrib.cache.BaseCache
method), 198

add() (werkzeug.datastructures.Headers
method), 125

add() (werkzeug.datastructures.HeaderSet
method), 128

add() (werkzeug.datastructures.MultiDict
method), 119

add() (werkzeug.routing.Map method),
81

add_etag() (werkzeug.wrappers.ETagResponseMixin
method), 72

add_file() (werkzeug.datastructures.FileMultiDict
method), 124

add_header()
(werkzeug.datastructures.Headers
method), 125

age (werkzeug.wrappers.CommonResponseDescriptorsMixin

255

attribute), 74
algorithm (werkzeug.datastructures.WWWAuthenticate

attribute), 133
allow (werkzeug.wrappers.CommonResponseDescriptorsMixin

attribute), 75
allowed_methods()

(werkzeug.routing.MapAdapter
method), 83

AnyConverter (class in
werkzeug.routing), 79

append_slash_redirect() (in module
werkzeug.utils), 142

application() (werkzeug.wrappers.BaseRequest
class method), 58

args (werkzeug.test.EnvironBuilder
attribute), 45

args (werkzeug.wrappers.BaseRequest at-
tribute), 58

as_set() (werkzeug.datastructures.ETags
method), 132

as_set() (werkzeug.datastructures.HeaderSet
method), 128

ascii_host (werkzeug.urls.BaseURL at-
tribute), 149

AtomFeed (class in
werkzeug.contrib.atom), 187

auth (werkzeug.urls.BaseURL attribute),
149

auth_property()
(werkzeug.datastructures.WWWAuthenticate
static method), 133

Authorization (class in
werkzeug.datastructures), 132

authorization
(werkzeug.wrappers.AuthorizationMixin
attribute), 71

AuthorizationMixin (class in
werkzeug.wrappers), 71

autocorrect_location_header
(werkzeug.wrappers.BaseResponse
attribute), 65

automatically_set_content_length
(werkzeug.wrappers.BaseResponse
attribute), 65

B
BadGateway, 171
BadRequest, 168

base_url (werkzeug.test.EnvironBuilder
attribute), 45

base_url (werkzeug.wrappers.BaseRequest
attribute), 58

BaseCache (class in
werkzeug.contrib.cache), 198

BaseRequest (class in
werkzeug.wrappers), 56

BaseResponse (class in
werkzeug.wrappers), 63

BaseURL (class in werkzeug.urls), 149
best (werkzeug.datastructures.Accept at-

tribute), 129
best_match() (werkzeug.datastructures.Accept

method), 129
bind() (werkzeug.routing.Map method),

81
bind_arguments() (in module

werkzeug.utils), 144
bind_to_environ()

(werkzeug.routing.Map method),
81

BrokenFilesystemWarning (class in
werkzeug.filesystem), 103

browser (werkzeug.useragents.UserAgent
attribute), 146

build() (werkzeug.routing.MapAdapter
method), 83

BytesURL (class in werkzeug.urls), 151

C
cache_control

(werkzeug.wrappers.ETagRequestMixin
attribute), 71

cache_control
(werkzeug.wrappers.ETagResponseMixin
attribute), 72

cached_property (class in
werkzeug.utils), 140

calculate_content_length()
(werkzeug.wrappers.BaseResponse
method), 65

call_on_close()
(werkzeug.wrappers.BaseResponse
method), 65

CGIRootFix (class in
werkzeug.contrib.fixers), 207

charset (werkzeug.contrib.wrappers.DynamicCharsetRequestMixin

256

attribute), 205
charset (werkzeug.contrib.wrappers.DynamicCharsetResponseMixin

attribute), 206
charset (werkzeug.test.EnvironBuilder at-

tribute), 44
charset (werkzeug.wrappers.BaseRequest

attribute), 58
charset (werkzeug.wrappers.BaseResponse

attribute), 65
CharsetAccept (class in

werkzeug.datastructures), 130
check_password_hash() (in module

werkzeug.security), 147
cleanup() (werkzeug.local.LocalManager

method), 161
clear() (werkzeug.contrib.cache.BaseCache

method), 199
clear() (werkzeug.datastructures.Headers

method), 125
clear() (werkzeug.datastructures.HeaderSet

method), 128
clear() (werkzeug.datastructures.MultiDict

method), 119
Client (class in werkzeug.test), 46
ClientDisconnected, 171
close() (werkzeug.datastructures.FileStorage

method), 136
close() (werkzeug.test.EnvironBuilder

method), 45
close() (werkzeug.wrappers.BaseRequest

method), 58
close() (werkzeug.wrappers.BaseResponse

method), 65
ClosingIterator (class in werkzeug.wsgi),

93
cnonce (werkzeug.datastructures.Authorization

attribute), 132
CombinedMultiDict (class in

werkzeug.datastructures), 123
CommonRequestDescriptorsMixin (class

in werkzeug.wrappers), 73
CommonResponseDescriptorsMixin

(class in werkzeug.wrappers), 74
Conflict, 169
contains() (werkzeug.datastructures.ETags

method), 132
contains_raw()

(werkzeug.datastructures.ETags

method), 132
contains_weak()

(werkzeug.datastructures.ETags
method), 132

content_encoding
(werkzeug.wrappers.CommonRequestDescriptorsMixin
attribute), 73

content_encoding
(werkzeug.wrappers.CommonResponseDescriptorsMixin
attribute), 75

content_language
(werkzeug.wrappers.CommonResponseDescriptorsMixin
attribute), 75

content_length
(werkzeug.datastructures.FileStorage
attribute), 136

content_length
(werkzeug.test.EnvironBuilder
attribute), 45

content_length
(werkzeug.wrappers.CommonRequestDescriptorsMixin
attribute), 73

content_length
(werkzeug.wrappers.CommonResponseDescriptorsMixin
attribute), 75

content_location
(werkzeug.wrappers.CommonResponseDescriptorsMixin
attribute), 75

content_md5
(werkzeug.wrappers.CommonRequestDescriptorsMixin
attribute), 73

content_md5
(werkzeug.wrappers.CommonResponseDescriptorsMixin
attribute), 75

content_range
(werkzeug.wrappers.ETagResponseMixin
attribute), 72

content_type
(werkzeug.datastructures.FileStorage
attribute), 136

content_type
(werkzeug.test.EnvironBuilder
attribute), 45

content_type
(werkzeug.wrappers.CommonRequestDescriptorsMixin
attribute), 74

content_type
(werkzeug.wrappers.CommonResponseDescriptorsMixin

257

attribute), 75
ContentRange (class in

werkzeug.datastructures), 135
converters (werkzeug.routing.Map at-

tribute), 81
cookie_date() (in module werkzeug.http),

105
cookies (werkzeug.wrappers.BaseRequest

attribute), 58
copy() (werkzeug.datastructures.ImmutableDict

method), 124
copy() (werkzeug.datastructures.ImmutableMultiDict

method), 123
copy() (werkzeug.datastructures.ImmutableOrderedMultiDict

method), 123
copy() (werkzeug.datastructures.ImmutableTypeConversionDict

method), 118
copy() (werkzeug.datastructures.MultiDict

method), 119
create_environ() (in module

werkzeug.test), 47

D
data (werkzeug.wrappers.BaseRequest

attribute), 58
data (werkzeug.wrappers.BaseResponse

attribute), 66
date (werkzeug.datastructures.IfRange

attribute), 134
date (werkzeug.wrappers.CommonRequestDescriptorsMixin

attribute), 74
date (werkzeug.wrappers.CommonResponseDescriptorsMixin

attribute), 75
DebuggedApplication (class in

werkzeug.debug), 49
dec() (werkzeug.contrib.cache.BaseCache

method), 199
decode() (werkzeug.urls.BytesURL

method), 151
decode_netloc() (werkzeug.urls.BaseURL

method), 149
decode_query() (werkzeug.urls.BaseURL

method), 149
deepcopy() (werkzeug.datastructures.MultiDict

method), 119
default_charset

(werkzeug.contrib.wrappers.DynamicCharsetRequestMixin
attribute), 205

default_charset
(werkzeug.contrib.wrappers.DynamicCharsetResponseMixin
attribute), 206

default_converters
(werkzeug.routing.Map at-
tribute), 82

default_mimetype
(werkzeug.wrappers.BaseResponse
attribute), 66

default_status
(werkzeug.wrappers.BaseResponse
attribute), 66

delete() (werkzeug.contrib.cache.BaseCache
method), 199

delete() (werkzeug.contrib.sessions.SessionStore
method), 191

delete() (werkzeug.test.Client method), 47
delete_cookie()

(werkzeug.wrappers.BaseResponse
method), 66

delete_many()
(werkzeug.contrib.cache.BaseCache
method), 199

dict_storage_class
(werkzeug.wrappers.BaseRequest
attribute), 59

direct_passthrough
(werkzeug.wrappers.BaseResponse
attribute), 65

disable_data_descriptor
(werkzeug.wrappers.BaseRequest
attribute), 59

discard() (werkzeug.datastructures.HeaderSet
method), 128

dispatch() (werkzeug.routing.MapAdapter
method), 84

DispatcherMiddleware (class in
werkzeug.wsgi), 166

domain (werkzeug.datastructures.WWWAuthenticate
attribute), 133

dump_cookie() (in module
werkzeug.http), 111

dump_cookie() (in module
werkzeug.utils), 141

dump_header() (in module
werkzeug.http), 111

DynamicCharsetRequestMixin (class in
werkzeug.contrib.wrappers), 205

258

DynamicCharsetResponseMixin (class in
werkzeug.contrib.wrappers), 206

E
empty() (werkzeug.routing.Rule

method), 89
encode() (werkzeug.urls.URL method),

152
encode_netloc()

(werkzeug.urls.BytesURL
method), 151

encode_netloc() (werkzeug.urls.URL
method), 152

encoding_errors
(werkzeug.wrappers.BaseRequest
attribute), 59

EndpointPrefix (class in
werkzeug.routing), 90

environ (werkzeug.wrappers.BaseRequest
attribute), 57

environ_base
(werkzeug.test.EnvironBuilder
attribute), 45

environ_overrides
(werkzeug.test.EnvironBuilder
attribute), 45

environ_property (class in
werkzeug.utils), 140

EnvironBuilder (class in werkzeug.test),
43

EnvironHeaders (class in
werkzeug.datastructures), 128

errors_stream
(werkzeug.test.EnvironBuilder
attribute), 44

escape() (in module werkzeug.utils), 139
etag (werkzeug.datastructures.IfRange at-

tribute), 134
ETagRequestMixin (class in

werkzeug.wrappers), 71
ETagResponseMixin (class in

werkzeug.wrappers), 71
ETags (class in werkzeug.datastructures),

132
exhaust() (werkzeug.wsgi.LimitedStream

method), 94
ExpectationFailed, 170
expires (werkzeug.wrappers.CommonResponseDescriptorsMixin

attribute), 75
extend() (werkzeug.datastructures.Headers

method), 125
extract_path_info() (in module

werkzeug.wsgi), 100

F
FeedEntry (class in

werkzeug.contrib.atom), 189
FileMultiDict (class in

werkzeug.datastructures), 124
filename (werkzeug.datastructures.FileStorage

attribute), 136
files (werkzeug.test.EnvironBuilder

attribute), 45
files (werkzeug.wrappers.BaseRequest at-

tribute), 59
FileStorage (class in

werkzeug.datastructures), 136
FileSystemCache (class in

werkzeug.contrib.cache), 203
FilesystemSessionStore (class in

werkzeug.contrib.sessions), 192
FileWrapper (class in werkzeug.wsgi), 94
find() (werkzeug.datastructures.Accept

method), 130
find() (werkzeug.datastructures.HeaderSet

method), 128
find_modules() (in module

werkzeug.utils), 143
FloatConverter (class in

werkzeug.routing), 80
Forbidden, 168
force_type() (werkzeug.wrappers.BaseResponse

class method), 66
form (werkzeug.test.EnvironBuilder at-

tribute), 45
form (werkzeug.wrappers.BaseRequest

attribute), 59
form_data_parser_class

(werkzeug.wrappers.BaseRequest
attribute), 59

FormDataParser (class in
werkzeug.formparser), 114

freeze() (werkzeug.wrappers.BaseResponse
method), 67

freeze() (werkzeug.wrappers.ETagResponseMixin
method), 72

259

from_app() (werkzeug.wrappers.BaseResponse
class method), 67

from_values()
(werkzeug.wrappers.BaseRequest
class method), 59

fromkeys() (werkzeug.datastructures.MultiDict
method), 119

full_path (werkzeug.wrappers.BaseRequest
attribute), 60

G
GAEMemcachedCache (class in

werkzeug.contrib.cache), 202
generate() (werkzeug.contrib.atom.AtomFeed

method), 188
generate_etag() (in module

werkzeug.http), 113
generate_key()

(werkzeug.contrib.sessions.SessionStore
method), 191

generate_password_hash() (in module
werkzeug.security), 147

get() (werkzeug.contrib.cache.BaseCache
method), 199

get() (werkzeug.contrib.sessions.SessionStore
method), 191

get() (werkzeug.datastructures.Headers
method), 125

get() (werkzeug.datastructures.MultiDict
method), 119

get() (werkzeug.datastructures.TypeConversionDict
method), 117

get() (werkzeug.test.Client method), 47
get_all() (werkzeug.datastructures.Headers

method), 126
get_app_iter()

(werkzeug.wrappers.BaseResponse
method), 67

get_content_length() (in module
werkzeug.wsgi), 97

get_current_url() (in module
werkzeug.wsgi), 97

get_data() (werkzeug.wrappers.BaseRequest
method), 60

get_data() (werkzeug.wrappers.BaseResponse
method), 67

get_default_redirect()
(werkzeug.routing.MapAdapter

method), 85
get_dict() (werkzeug.contrib.cache.BaseCache

method), 199
get_environ()

(werkzeug.test.EnvironBuilder
method), 45

get_etag() (werkzeug.wrappers.ETagResponseMixin
method), 72

get_file_location()
(werkzeug.urls.BaseURL
method), 149

get_filesystem_encoding() (in module
werkzeug.filesystem), 103

get_host() (in module werkzeug.wsgi), 97
get_host() (werkzeug.routing.MapAdapter

method), 85
get_ident() (werkzeug.local.LocalManager

method), 161
get_input_stream() (in module

werkzeug.wsgi), 97
get_many() (werkzeug.contrib.cache.BaseCache

method), 200
get_path_info() (in module

werkzeug.wsgi), 99
get_query_string() (in module

werkzeug.wsgi), 98
get_remote_addr()

(werkzeug.contrib.fixers.ProxyFix
method), 208

get_request()
(werkzeug.test.EnvironBuilder
method), 45

get_response()
(werkzeug.contrib.atom.AtomFeed
method), 188

get_response()
(werkzeug.exceptions.HTTPException
method), 172

get_rules() (werkzeug.routing.RuleFactory
method), 89

get_script_name() (in module
werkzeug.wsgi), 98

get_wsgi_headers()
(werkzeug.wrappers.BaseResponse
method), 67

get_wsgi_response()
(werkzeug.wrappers.BaseResponse
method), 68

260

getlist() (werkzeug.datastructures.Headers
method), 126

getlist() (werkzeug.datastructures.MultiDict
method), 119

Gone, 169

H
has() (werkzeug.contrib.cache.BaseCache

method), 200
has_key() (werkzeug.datastructures.Headers

method), 126
has_key() (werkzeug.datastructures.MultiDict

method), 120
hash_method()

(werkzeug.contrib.securecookie.SecureCookie
static method), 196

head() (werkzeug.test.Client method), 47
header_property (class in werkzeug.utils),

141
HeaderRewriterFix (class in

werkzeug.contrib.fixers), 208
Headers (class in

werkzeug.datastructures), 124
headers (werkzeug.datastructures.FileStorage

attribute), 136
headers (werkzeug.test.EnvironBuilder

attribute), 44
headers (werkzeug.wrappers.BaseRequest

attribute), 60
headers (werkzeug.wrappers.BaseResponse

attribute), 64
HeaderSet (class in

werkzeug.datastructures), 128
host (werkzeug.urls.BaseURL attribute),

150
host (werkzeug.wrappers.BaseRequest at-

tribute), 60
host_is_trusted() (in module

werkzeug.wsgi), 100
host_url (werkzeug.wrappers.BaseRequest

attribute), 60
Href (class in werkzeug.urls), 151
HTMLBuilder (class in werkzeug.utils),

139
http_date() (in module werkzeug.http),

105
HTTP_STATUS_CODES (in module

werkzeug.http), 113

HTTPException, 171
HTTPUnicodeError, 171

I
if_match (werkzeug.wrappers.ETagRequestMixin

attribute), 71
if_modified_since

(werkzeug.wrappers.ETagRequestMixin
attribute), 71

if_none_match
(werkzeug.wrappers.ETagRequestMixin
attribute), 71

if_range (werkzeug.wrappers.ETagRequestMixin
attribute), 71

if_unmodified_since
(werkzeug.wrappers.ETagRequestMixin
attribute), 71

IfRange (class in
werkzeug.datastructures), 134

ImATeapot, 170
ImmutableDict (class in

werkzeug.datastructures), 124
ImmutableList (class in

werkzeug.datastructures), 124
ImmutableMultiDict (class in

werkzeug.datastructures), 123
ImmutableOrderedMultiDict (class in

werkzeug.datastructures), 123
ImmutableTypeConversionDict (class in

werkzeug.datastructures), 118
implicit_sequence_conversion

(werkzeug.wrappers.BaseResponse
attribute), 68

import_string() (in module
werkzeug.utils), 142

inc() (werkzeug.contrib.cache.BaseCache
method), 200

index() (werkzeug.datastructures.Accept
method), 130

index() (werkzeug.datastructures.HeaderSet
method), 128

input_stream
(werkzeug.test.EnvironBuilder
attribute), 45

IntegerConverter (class in
werkzeug.routing), 79

InternalServerError, 170
InternetExplorerFix (class in

261

werkzeug.contrib.fixers), 209
iri_to_uri() (in module werkzeug.urls),

152
is_allowed() (werkzeug.wsgi.SharedDataMiddleware

method), 166
is_byte_range_valid() (in module

werkzeug.http), 110
is_endpoint_expecting()

(werkzeug.routing.Map method),
82

is_entity_header() (in module
werkzeug.http), 109

is_exhausted
(werkzeug.wsgi.LimitedStream
attribute), 95

is_hop_by_hop_header() (in module
werkzeug.http), 110

is_multiprocess
(werkzeug.wrappers.BaseRequest
attribute), 60

is_multithread
(werkzeug.wrappers.BaseRequest
attribute), 60

is_resource_modified() (in module
werkzeug.http), 113

is_run_once (werkzeug.wrappers.BaseRequest
attribute), 61

is_running_from_reloader() (in module
werkzeug.serving), 35

is_secure (werkzeug.wrappers.BaseRequest
attribute), 61

is_sequence (werkzeug.wrappers.BaseResponse
attribute), 68

is_streamed (werkzeug.wrappers.BaseResponse
attribute), 68

is_valid_key()
(werkzeug.contrib.sessions.SessionStore
method), 191

is_weak() (werkzeug.datastructures.ETags
method), 132

is_xhr (werkzeug.wrappers.BaseRequest
attribute), 61

items() (werkzeug.datastructures.Headers
method), 126

items() (werkzeug.datastructures.MultiDict
method), 120

iter_encoded()
(werkzeug.wrappers.BaseResponse

method), 68
iter_rules() (werkzeug.routing.Map

method), 82
IterIO (class in werkzeug.contrib.iterio),

207
iteritems() (werkzeug.datastructures.MultiDict

method), 120
iterlists() (werkzeug.datastructures.MultiDict

method), 120
iterlistvalues()

(werkzeug.datastructures.MultiDict
method), 120

itervalues() (werkzeug.datastructures.Accept
method), 130

itervalues() (werkzeug.datastructures.MultiDict
method), 120

J
join() (werkzeug.urls.BaseURL method),

150
json (werkzeug.contrib.wrappers.JSONRequestMixin

attribute), 204
JSONRequestMixin (class in

werkzeug.contrib.wrappers),
204

K
keys() (werkzeug.datastructures.Headers

method), 126
keys() (werkzeug.datastructures.MultiDict

method), 120

L
language (werkzeug.useragents.UserAgent

attribute), 146
LanguageAccept (class in

werkzeug.datastructures), 130
last_modified

(werkzeug.wrappers.CommonResponseDescriptorsMixin
attribute), 76

length (werkzeug.datastructures.ContentRange
attribute), 135

LengthRequired, 169
LimitedStream (class in werkzeug.wsgi),

94
LintMiddleware (class in

werkzeug.contrib.lint), 210
list() (werkzeug.contrib.sessions.FilesystemSessionStore

method), 192

262

list_storage_class
(werkzeug.wrappers.BaseRequest
attribute), 61

lists() (werkzeug.datastructures.MultiDict
method), 120

listvalues() (werkzeug.datastructures.MultiDict
method), 120

load_cookie()
(werkzeug.contrib.securecookie.SecureCookie
class method), 196

LocalManager (class in werkzeug.local),
160

LocalProxy (class in werkzeug.local), 162
LocalStack (class in werkzeug.local), 161
location (werkzeug.wrappers.CommonResponseDescriptorsMixin

attribute), 76

M
make_action() (in module

werkzeug.contrib.profiler), 210
make_alias_redirect_url()

(werkzeug.routing.MapAdapter
method), 85

make_chunk_iter() (in module
werkzeug.wsgi), 96

make_conditional()
(werkzeug.wrappers.ETagResponseMixin
method), 72

make_content_range()
(werkzeug.datastructures.Range
method), 135

make_form_data_parser()
(werkzeug.wrappers.BaseRequest
method), 61

make_line_iter() (in module
werkzeug.wsgi), 95

make_middleware()
(werkzeug.local.LocalManager
method), 161

make_redirect_url()
(werkzeug.routing.MapAdapter
method), 85

make_sequence()
(werkzeug.wrappers.BaseResponse
method), 69

make_ssl_devcert() (in module
werkzeug.serving), 35

Map (class in werkzeug.routing), 80

MapAdapter (class in werkzeug.routing),
82

match() (werkzeug.routing.MapAdapter
method), 85

max_age (werkzeug.datastructures.RequestCacheControl
attribute), 131

max_age (werkzeug.datastructures.ResponseCacheControl
attribute), 131

max_content_length
(werkzeug.wrappers.BaseRequest
attribute), 61

max_cookie_size
(werkzeug.wrappers.BaseResponse
attribute), 69

max_form_memory_size
(werkzeug.wrappers.BaseRequest
attribute), 61

max_forwards
(werkzeug.wrappers.CommonRequestDescriptorsMixin
attribute), 74

max_stale (werkzeug.datastructures.RequestCacheControl
attribute), 131

MemcachedCache (class in
werkzeug.contrib.cache), 201

MergeStream (class in
werkzeug.contrib.profiler), 209

method (werkzeug.wrappers.BaseRequest
attribute), 61

MethodNotAllowed, 168
middleware()

(werkzeug.local.LocalManager
method), 161

MIMEAccept (class in
werkzeug.datastructures), 130

mimetype (werkzeug.datastructures.FileStorage
attribute), 136

mimetype (werkzeug.wrappers.CommonRequestDescriptorsMixin
attribute), 74

mimetype (werkzeug.wrappers.CommonResponseDescriptorsMixin
attribute), 76

mimetype_params
(werkzeug.datastructures.FileStorage
attribute), 136

mimetype_params
(werkzeug.wrappers.CommonRequestDescriptorsMixin
attribute), 74

mimetype_params
(werkzeug.wrappers.CommonResponseDescriptorsMixin

263

attribute), 76
min_fresh (werkzeug.datastructures.RequestCacheControl

attribute), 131
modified (werkzeug.contrib.securecookie.SecureCookie

attribute), 195
modified (werkzeug.contrib.sessions.Session

attribute), 191
MultiDict (class in

werkzeug.datastructures), 118
multiprocess (werkzeug.test.EnvironBuilder

attribute), 45
multithread (werkzeug.test.EnvironBuilder

attribute), 45
must_revalidate

(werkzeug.datastructures.ResponseCacheControl
attribute), 131

N
name (werkzeug.datastructures.FileStorage

attribute), 136
nc (werkzeug.datastructures.Authorization

attribute), 132
new (werkzeug.contrib.securecookie.SecureCookie

attribute), 195
new (werkzeug.contrib.sessions.Session

attribute), 191
new() (werkzeug.contrib.sessions.SessionStore

method), 191
no_cache (werkzeug.datastructures.RequestCacheControl

attribute), 131
no_cache (werkzeug.datastructures.ResponseCacheControl

attribute), 131
no_store (werkzeug.datastructures.RequestCacheControl

attribute), 131
no_store (werkzeug.datastructures.ResponseCacheControl

attribute), 131
no_transform

(werkzeug.datastructures.RequestCacheControl
attribute), 131

no_transform
(werkzeug.datastructures.ResponseCacheControl
attribute), 131

nonce (werkzeug.datastructures.Authorization
attribute), 132

nonce (werkzeug.datastructures.WWWAuthenticate
attribute), 134

NotAcceptable, 168
NotFound, 168

NotImplemented, 171
NullCache (class in

werkzeug.contrib.cache), 201

O
on_disconnect()

(werkzeug.wsgi.LimitedStream
method), 95

on_exhausted()
(werkzeug.wsgi.LimitedStream
method), 95

only_if_cached
(werkzeug.datastructures.RequestCacheControl
attribute), 131

opaque (werkzeug.datastructures.Authorization
attribute), 133

opaque (werkzeug.datastructures.WWWAuthenticate
attribute), 134

open() (werkzeug.test.Client method), 46
options() (werkzeug.test.Client method),

47
OrderedMultiDict (class in

werkzeug.datastructures), 123

P
parameter_storage_class

(werkzeug.wrappers.BaseRequest
attribute), 62

parse_accept_header() (in module
werkzeug.http), 108

parse_authorization_header() (in module
werkzeug.http), 108

parse_cache_control_header() (in module
werkzeug.http), 108

parse_content_range_header() (in module
werkzeug.http), 109

parse_cookie() (in module
werkzeug.http), 111

parse_cookie() (in module
werkzeug.utils), 141

parse_date() (in module werkzeug.http),
106

parse_dict_header() (in module
werkzeug.http), 107

parse_etags() (in module werkzeug.http),
112

parse_form_data() (in module
werkzeug.formparser), 115

264

parse_if_range_header() (in module
werkzeug.http), 109

parse_list_header() (in module
werkzeug.http), 107

parse_multipart_headers() (in module
werkzeug.formparser), 116

parse_options_header() (in module
werkzeug.http), 106

parse_protobuf()
(werkzeug.contrib.wrappers.ProtobufRequestMixin
method), 204

parse_range_header() (in module
werkzeug.http), 109

parse_set_header() (in module
werkzeug.http), 106

parse_www_authenticate_header() (in
module werkzeug.http), 109

password (werkzeug.datastructures.Authorization
attribute), 133

password (werkzeug.urls.BaseURL at-
tribute), 150

patch() (werkzeug.test.Client method), 47
path (werkzeug.contrib.wrappers.ReverseSlashBehaviorRequestMixin

attribute), 205
path (werkzeug.test.EnvironBuilder at-

tribute), 44
path (werkzeug.wrappers.BaseRequest

attribute), 62
PathConverter (class in

werkzeug.routing), 79
PathInfoFromRequestUriFix (class in

werkzeug.contrib.fixers), 208
pbkdf2_bin() (in module

werkzeug.security), 148
pbkdf2_hex() (in module

werkzeug.security), 148
peek_path_info() (in module

werkzeug.wsgi), 99
platform (werkzeug.useragents.UserAgent

attribute), 145
pop() (werkzeug.datastructures.Headers

method), 126
pop() (werkzeug.datastructures.MultiDict

method), 120
pop() (werkzeug.local.LocalStack

method), 162
pop_path_info() (in module

werkzeug.wsgi), 99

popitem() (werkzeug.datastructures.Headers
method), 127

popitem() (werkzeug.datastructures.MultiDict
method), 121

popitemlist()
(werkzeug.datastructures.MultiDict
method), 121

poplist() (werkzeug.datastructures.MultiDict
method), 121

port (werkzeug.urls.BaseURL attribute),
150

post() (werkzeug.test.Client method), 47
pragma (werkzeug.wrappers.CommonRequestDescriptorsMixin

attribute), 74
PreconditionFailed, 169
PreconditionRequired, 170
private (werkzeug.datastructures.ResponseCacheControl

attribute), 131
ProfilerMiddleware (class in

werkzeug.contrib.profiler), 209
protobuf_check_initialization

(werkzeug.contrib.wrappers.ProtobufRequestMixin
attribute), 204

ProtobufRequestMixin (class in
werkzeug.contrib.wrappers),
204

proxy_revalidate
(werkzeug.datastructures.ResponseCacheControl
attribute), 132

ProxyFix (class in
werkzeug.contrib.fixers), 208

public (werkzeug.datastructures.ResponseCacheControl
attribute), 132

push() (werkzeug.local.LocalStack
method), 162

put() (werkzeug.test.Client method), 47
Python Enhancement Proposals

PEP 333, 21, 96, 210, 215

Q
qop (werkzeug.datastructures.Authorization

attribute), 133
qop (werkzeug.datastructures.WWWAuthenticate

attribute), 134
quality() (werkzeug.datastructures.Accept

method), 130
query_string (werkzeug.test.EnvironBuilder

attribute), 46

265

query_string (werkzeug.wrappers.BaseRequest
attribute), 62

quote() (werkzeug.contrib.securecookie.SecureCookie
class method), 196

quote_base64
(werkzeug.contrib.securecookie.SecureCookie
attribute), 196

quote_etag() (in module werkzeug.http),
112

quote_header_value() (in module
werkzeug.http), 110

R
Range (class in werkzeug.datastructures),

135
range (werkzeug.wrappers.ETagRequestMixin

attribute), 71
range_for_length()

(werkzeug.datastructures.Range
method), 135

ranges (werkzeug.datastructures.Range
attribute), 135

raw_password (werkzeug.urls.BaseURL
attribute), 150

raw_username (werkzeug.urls.BaseURL
attribute), 150

read() (werkzeug.wsgi.LimitedStream
method), 95

readline() (werkzeug.wsgi.LimitedStream
method), 95

readlines() (werkzeug.wsgi.LimitedStream
method), 95

realm (werkzeug.datastructures.Authorization
attribute), 133

realm (werkzeug.datastructures.WWWAuthenticate
attribute), 134

redirect() (in module werkzeug.utils), 142
RedisCache (class in

werkzeug.contrib.cache), 202
referrer (werkzeug.wrappers.CommonRequestDescriptorsMixin

attribute), 74
release_local() (in module

werkzeug.local), 160
remote_addr

(werkzeug.wrappers.BaseRequest
attribute), 62

remote_user (werkzeug.wrappers.BaseRequest
attribute), 62

remove() (werkzeug.datastructures.Headers
method), 127

remove() (werkzeug.datastructures.HeaderSet
method), 128

remove_entity_headers() (in module
werkzeug.http), 110

remove_hop_by_hop_headers() (in mod-
ule werkzeug.http), 110

replace() (werkzeug.urls.BaseURL
method), 150

Request (class in werkzeug.wrappers), 70
request_class

(werkzeug.test.EnvironBuilder
attribute), 46

RequestCacheControl (class in
werkzeug.datastructures), 130

RequestedRangeNotSatisfiable, 169
RequestEntityTooLarge, 169
RequestHeaderFieldsTooLarge, 170
RequestTimeout, 169
RequestURITooLarge, 169
responder() (in module werkzeug.wsgi),

101
Response (class in werkzeug.wrappers),

70
response (werkzeug.datastructures.Authorization

attribute), 133
response (werkzeug.wrappers.BaseResponse

attribute), 64
ResponseCacheControl (class in

werkzeug.datastructures), 131
ResponseStreamMixin (class in

werkzeug.wrappers), 73
retry_after (werkzeug.wrappers.CommonResponseDescriptorsMixin

attribute), 76
ReverseSlashBehaviorRequestMixin

(class in
werkzeug.contrib.wrappers),
204

RFC
RFC 2616, 21, 106, 110
RFC 4287, 187

routing_args (werkzeug.contrib.wrappers.RoutingArgsRequestMixin
attribute), 204

routing_vars (werkzeug.contrib.wrappers.RoutingArgsRequestMixin
attribute), 204

RoutingArgsRequestMixin (class in
werkzeug.contrib.wrappers), 204

266

Rule (class in werkzeug.routing), 87
RuleFactory (class in werkzeug.routing),

89
RuleTemplate (class in

werkzeug.routing), 90
run_simple() (in module

werkzeug.serving), 33
run_wsgi_app() (in module

werkzeug.test), 47

S
s_maxage (werkzeug.datastructures.ResponseCacheControl

attribute), 132
safe_join() (in module

werkzeug.security), 148
safe_str_cmp() (in module

werkzeug.security), 147
save() (werkzeug.contrib.sessions.SessionStore

method), 192
save() (werkzeug.datastructures.FileStorage

method), 136
save_cookie()

(werkzeug.contrib.securecookie.SecureCookie
method), 196

save_if_modified()
(werkzeug.contrib.sessions.SessionStore
method), 192

scheme (werkzeug.wrappers.BaseRequest
attribute), 62

script_root (werkzeug.contrib.wrappers.ReverseSlashBehaviorRequestMixin
attribute), 205

script_root (werkzeug.wrappers.BaseRequest
attribute), 62

secure_filename() (in module
werkzeug.utils), 144

SecureCookie (class in
werkzeug.contrib.securecookie),
195

SecurityError, 171
serialization_method

(werkzeug.contrib.securecookie.SecureCookie
attribute), 196

serialize() (werkzeug.contrib.securecookie.SecureCookie
method), 196

server_name (werkzeug.test.EnvironBuilder
attribute), 46

server_port (werkzeug.test.EnvironBuilder
attribute), 46

server_protocol
(werkzeug.test.EnvironBuilder
attribute), 46

ServiceUnavailable, 171
Session (class in

werkzeug.contrib.sessions), 191
SessionMiddleware (class in

werkzeug.contrib.sessions), 192
SessionStore (class in

werkzeug.contrib.sessions), 191
set() (werkzeug.contrib.cache.BaseCache

method), 200
set() (werkzeug.datastructures.ContentRange

method), 135
set() (werkzeug.datastructures.Headers

method), 127
set_basic() (werkzeug.datastructures.WWWAuthenticate

method), 134
set_cookie() (werkzeug.wrappers.BaseResponse

method), 69
set_data() (werkzeug.wrappers.BaseResponse

method), 69
set_digest() (werkzeug.datastructures.WWWAuthenticate

method), 134
set_etag() (werkzeug.wrappers.ETagResponseMixin

method), 73
set_many() (werkzeug.contrib.cache.BaseCache

method), 200
setdefault() (werkzeug.datastructures.Headers

method), 127
setdefault() (werkzeug.datastructures.MultiDict

method), 121
setlist() (werkzeug.datastructures.MultiDict

method), 121
setlistdefault()

(werkzeug.datastructures.MultiDict
method), 121

shallow (werkzeug.wrappers.BaseRequest
attribute), 57

SharedDataMiddleware (class in
werkzeug.wsgi), 165

should_save (werkzeug.contrib.securecookie.SecureCookie
attribute), 197

should_save (werkzeug.contrib.sessions.Session
attribute), 191

sid (werkzeug.contrib.sessions.Session at-
tribute), 191

SimpleCache (class in

267

werkzeug.contrib.cache), 201
stale (werkzeug.datastructures.WWWAuthenticate

attribute), 134
start (werkzeug.datastructures.ContentRange

attribute), 135
status (werkzeug.wrappers.BaseResponse

attribute), 70
status_code (werkzeug.wrappers.BaseResponse

attribute), 65, 70
stop (werkzeug.datastructures.ContentRange

attribute), 135
stream (werkzeug.datastructures.FileStorage

attribute), 136
stream (werkzeug.wrappers.BaseRequest

attribute), 62
stream (werkzeug.wrappers.ResponseStreamMixin

attribute), 73
string (werkzeug.useragents.UserAgent

attribute), 145
Subdomain (class in werkzeug.routing),

89
Submount (class in werkzeug.routing), 89

T
tell() (werkzeug.wsgi.LimitedStream

method), 95
test() (werkzeug.routing.MapAdapter

method), 87
test_app() (in module werkzeug.testapp),

101
to_content_range_header()

(werkzeug.datastructures.Range
method), 135

to_dict() (werkzeug.datastructures.MultiDict
method), 122

to_header() (werkzeug.datastructures.Accept
method), 130

to_header() (werkzeug.datastructures.ETags
method), 132

to_header() (werkzeug.datastructures.HeaderSet
method), 129

to_header() (werkzeug.datastructures.IfRange
method), 134

to_header() (werkzeug.datastructures.Range
method), 135

to_header() (werkzeug.datastructures.WWWAuthenticate
method), 134

to_iri_tuple() (werkzeug.urls.BaseURL

method), 150
to_list() (werkzeug.datastructures.Headers

method), 127
to_string() (werkzeug.contrib.atom.AtomFeed

method), 188
to_uri_tuple() (werkzeug.urls.BaseURL

method), 150
to_url() (werkzeug.urls.BaseURL

method), 151
to_wsgi_list()

(werkzeug.datastructures.Headers
method), 127

TooManyRequests, 170
top (werkzeug.local.LocalStack attribute),

162
trace() (werkzeug.test.Client method), 47
trusted_hosts

(werkzeug.wrappers.BaseRequest
attribute), 62

type (werkzeug.datastructures.WWWAuthenticate
attribute), 134

TypeConversionDict (class in
werkzeug.datastructures), 117

U
Unauthorized, 168
unescape() (in module werkzeug.utils),

140
UnicodeConverter (class in

werkzeug.routing), 78
units (werkzeug.datastructures.ContentRange

attribute), 135
units (werkzeug.datastructures.Range at-

tribute), 135
unknown_charset()

(werkzeug.contrib.wrappers.DynamicCharsetRequestMixin
method), 205

unquote() (werkzeug.contrib.securecookie.SecureCookie
class method), 197

unquote_etag() (in module
werkzeug.http), 113

unquote_header_value() (in module
werkzeug.http), 110

UnquoteError, 197
unserialize() (werkzeug.contrib.securecookie.SecureCookie

class method), 197
unset() (werkzeug.datastructures.ContentRange

method), 135

268

UnsupportedMediaType, 169
update() (werkzeug.datastructures.HeaderSet

method), 129
update() (werkzeug.datastructures.MultiDict

method), 122
update() (werkzeug.routing.Map

method), 82
uri (werkzeug.datastructures.Authorization

attribute), 133
uri_to_iri() (in module werkzeug.urls),

153
URL (class in werkzeug.urls), 152
url (werkzeug.wrappers.BaseRequest at-

tribute), 63
url_charset (werkzeug.wrappers.BaseRequest

attribute), 63
url_decode() (in module werkzeug.urls),

153
url_decode_stream() (in module

werkzeug.urls), 154
url_encode() (in module werkzeug.urls),

155
url_encode_stream() (in module

werkzeug.urls), 155
url_fix() (in module werkzeug.urls), 156
url_join() (in module werkzeug.urls), 156
url_parse() (in module werkzeug.urls),

156
url_quote() (in module werkzeug.urls),

157
url_quote_plus() (in module

werkzeug.urls), 157
url_root (werkzeug.wrappers.BaseRequest

attribute), 63
url_unparse() (in module werkzeug.urls),

157
url_unquote() (in module werkzeug.urls),

157
url_unquote_plus() (in module

werkzeug.urls), 157
user_agent (werkzeug.wrappers.UserAgentMixin

attribute), 76
UserAgent (class in

werkzeug.useragents), 145
UserAgentMixin (class in

werkzeug.wrappers), 76
username (werkzeug.datastructures.Authorization

attribute), 133

username (werkzeug.urls.BaseURL
attribute), 151

UUIDConverter (class in
werkzeug.routing), 80

UWSGICache (class in
werkzeug.contrib.cache), 203

V
validate_arguments() (in module

werkzeug.utils), 143
values (werkzeug.wrappers.BaseRequest

attribute), 63
values() (werkzeug.datastructures.Accept

method), 130
values() (werkzeug.datastructures.Headers

method), 127
values() (werkzeug.datastructures.MultiDict

method), 122
vary (werkzeug.wrappers.CommonResponseDescriptorsMixin

attribute), 76
version (werkzeug.useragents.UserAgent

attribute), 146
viewitems() (werkzeug.datastructures.Headers

method), 127
viewitems() (werkzeug.datastructures.MultiDict

method), 122
viewkeys() (werkzeug.datastructures.Headers

method), 127
viewkeys() (werkzeug.datastructures.MultiDict

method), 122
viewlists() (werkzeug.datastructures.MultiDict

method), 122
viewlistvalues()

(werkzeug.datastructures.MultiDict
method), 122

viewvalues()
(werkzeug.datastructures.Accept
method), 130

viewvalues()
(werkzeug.datastructures.Headers
method), 128

viewvalues()
(werkzeug.datastructures.MultiDict
method), 123

W
want_form_data_parsed

(werkzeug.wrappers.BaseRequest
attribute), 63

269

werkzeug (module), 9, 19, 21, 215, 217,
221, 225

werkzeug.contrib.atom (module), 187
werkzeug.contrib.cache (module), 197
werkzeug.contrib.fixers (module), 207
werkzeug.contrib.iterio (module), 206
werkzeug.contrib.lint (module), 210
werkzeug.contrib.profiler (module), 209
werkzeug.contrib.securecookie (module),

193
werkzeug.contrib.sessions (module), 190
werkzeug.contrib.wrappers (module),

204
werkzeug.datastructures (module), 117
werkzeug.debug (module), 49
werkzeug.exceptions (module), 167
werkzeug.filesystem (module), 103
werkzeug.formparser (module), 114
werkzeug.http (module), 105
werkzeug.local (module), 159
werkzeug.routing (module), 77
werkzeug.security (module), 147
werkzeug.serving (module), 33
werkzeug.test (module), 41
werkzeug.urls (module), 149
werkzeug.useragents (module), 145
werkzeug.utils (module), 139
werkzeug.wrappers (module), 55
werkzeug.wsgi (module), 93, 165
wrap_file() (in module werkzeug.wsgi),

96
wsgi_version

(werkzeug.test.EnvironBuilder
attribute), 46

www_authenticate
(werkzeug.wrappers.WWWAuthenticateMixin
attribute), 76

WWWAuthenticate (class in
werkzeug.datastructures), 133

WWWAuthenticateMixin (class in
werkzeug.wrappers), 76

270

	I Getting Started
	Installation
	Transition to Werkzeug 1.0
	Werkzeug Tutorial
	API Levels
	Quickstart
	Python 3 Notes

	II Serving and Testing
	Serving WSGI Applications
	Test Utilities
	Debugging Applications

	III Reference
	Request / Response Objects
	URL Routing
	WSGI Helpers
	Filesystem Utilities
	HTTP Utilities
	Data Structures
	Utilities
	URL Helpers
	Context Locals
	Middlewares
	HTTP Exceptions

	IV Deployment
	Application Deployment

	V Contributed Modules
	Contributed Modules

	VI Additional Information
	Important Terms
	Unicode
	Dealing with Request Data
	Werkzeug Changelog

